The Limits of Maxing, Ranking, and Preference Learning

We present a comprehensive understanding of three important problems in PAC preference learning: maximum selection (maxing), ranking, and estimating all pairwise preference probabilities, in the adaptive setting. With just Weak Stochastic Transitivity, we show that maxing requires Ω(n) comparisons and with slightly more restrictive Medium Stochastic Transitivity, we present a linear complexity maxing algorithm. With Strong Stochastic Transitivity and Stochastic Triangle Inequality, we derive a ranking algorithm with optimalO(n log n) complexity and an optimal algorithm that estimates all pairwise preference probabilities.

[1]  Arun Rajkumar,et al.  A Statistical Convergence Perspective of Algorithms for Rank Aggregation from Pairwise Data , 2014, ICML.

[2]  Eli Upfal,et al.  Computing with Noisy Information , 1994, SIAM J. Comput..

[3]  Martin J. Wainwright,et al.  Stochastically Transitive Models for Pairwise Comparisons: Statistical and Computational Issues , 2015, IEEE Transactions on Information Theory.

[4]  Minje Jang,et al.  Top-K Ranking from Pairwise Comparisons: When Spectral Ranking is Optimal , 2016, ArXiv.

[5]  Filip Radlinski,et al.  Active exploration for learning rankings from clickthrough data , 2007, KDD '07.

[6]  Alon Orlitsky,et al.  Maxing and Ranking with Few Assumptions , 2017, NIPS.

[7]  Paul N. Bennett,et al.  Pairwise ranking aggregation in a crowdsourced setting , 2013, WSDM.

[8]  Michal Skořepa Decision Making: A Behavioral Economic Approach , 2011 .

[9]  Eyke Hüllermeier,et al.  Online Rank Elicitation for Plackett-Luce: A Dueling Bandits Approach , 2015, NIPS.

[10]  Eyke Hüllermeier,et al.  Label ranking by learning pairwise preferences , 2008, Artif. Intell..

[11]  Filip Radlinski,et al.  How does clickthrough data reflect retrieval quality? , 2008, CIKM '08.

[12]  Devavrat Shah,et al.  Rank Centrality: Ranking from Pairwise Comparisons , 2012, Oper. Res..

[13]  Eyke Hüllermeier,et al.  Preference-Based Rank Elicitation using Statistical Models: The Case of Mallows , 2014, ICML.

[14]  Martin J. Wainwright,et al.  Feeling the Bern: Adaptive Estimators for Bernoulli Probabilities of Pairwise Comparisons , 2019, IEEE Transactions on Information Theory.

[15]  Nihar B. Shah,et al.  Active ranking from pairwise comparisons and when parametric assumptions do not help , 2016, The Annals of Statistics.

[16]  Andrew Caplin,et al.  Aggregation and Social Choice: A Mean Voter Theorem , 1991 .

[17]  Alon Orlitsky,et al.  Maximum Selection and Sorting with Adversarial Comparators and an Application to Density Estimation , 2016, ArXiv.

[18]  Tanja Aitamurto,et al.  Crowdsourcing for Participatory Democracies: Efficient Elicitation of Social Choice Functions , 2014, HCOMP.

[19]  Francesco Ricci,et al.  Group recommendations with rank aggregation and collaborative filtering , 2010, RecSys '10.

[20]  Katja Hofmann,et al.  Contextual Dueling Bandits , 2015, COLT.

[21]  R. Plackett The Analysis of Permutations , 1975 .

[22]  Avinatan Hassidim,et al.  Sorting and Selection with Imprecise Comparisons , 2009, ICALP.

[23]  S. Chatterjee,et al.  Matrix estimation by Universal Singular Value Thresholding , 2012, 1212.1247.

[24]  Eyke Hüllermeier,et al.  PAC Rank Elicitation through Adaptive Sampling of Stochastic Pairwise Preferences , 2014, AAAI.

[25]  Thorsten Joachims,et al.  Beat the Mean Bandit , 2011, ICML.

[26]  Devavrat Shah,et al.  Iterative ranking from pair-wise comparisons , 2012, NIPS.

[27]  Soheil Mohajer,et al.  Active Learning for Top-K Rank Aggregation from Noisy Comparisons , 2017, ICML.

[28]  R. Duncan Luce,et al.  Individual Choice Behavior: A Theoretical Analysis , 1979 .

[29]  L. Bottou,et al.  Generalized Method-of-Moments for Rank Aggregation , 2013 .

[30]  Alon Orlitsky,et al.  Maximum Selection and Ranking under Noisy Comparisons , 2017, ICML.