Introducing Grammar Based Extensions for Grammatical Evolution

This paper presents a series of extensions to standard grammatical evolution. These grammar-based extensions facilitate the exchange of knowledge between genotype and phenotype strings, thus establishing a better correlation between the search and solution spaces, typically separated in grammatical evolution. The results obtained illustrate the practical advantages of these extensions, both in terms of convenience and potential increase in performance.

[1]  J. David Schaffer,et al.  An Adaptive Crossover Distribution Mechanism for Genetic Algorithms , 1987, ICGA.

[2]  Anthony Brabazon,et al.  Grammatical Constant Creation , 2004, GECCO.

[3]  Graham F. Spencer,et al.  Automatic Generation of Programs for Crawling and Walking , 1993, International Conference on Genetic Algorithms.

[4]  Vidroha Debroy,et al.  Genetic Programming , 1998, Lecture Notes in Computer Science.

[5]  Hitoshi Iba,et al.  Regularization approach to inductive genetic programming , 2001, IEEE Trans. Evol. Comput..

[6]  Hitoshi Iba,et al.  Genetic programming polynomial models of financial data series , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[7]  Michael O'Neill,et al.  Grammatical Evolution: Evolving Programs for an Arbitrary Language , 1998, EuroGP.

[8]  R. Rosenberg Simulation of genetic populations with biochemical properties : technical report , 1967 .

[9]  Annie S. Wu,et al.  The Proportional Genetic Algorithm: Gene Expression in a Genetic Algorithm , 2002, Genetic Programming and Evolvable Machines.

[10]  Anthony Brabazon,et al.  Meta-grammar constant creation with grammatical evolution by grammatical evolution , 2005, GECCO '05.

[11]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[12]  Conor Ryan,et al.  An Analysis of Diversity of Constants of Genetic Programming , 2003, EuroGP.

[13]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[14]  Maarten Keijzer,et al.  Improving Symbolic Regression with Interval Arithmetic and Linear Scaling , 2003, EuroGP.

[15]  Maarten Keijzer,et al.  Crossover in Grammatical Evolution , 2003, Genetic Programming and Evolvable Machines.

[16]  R.W. Morrison,et al.  A test problem generator for non-stationary environments , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[17]  Conor Ryan,et al.  Analysis of a Digit Concatenation Approach to Constant Creation , 2003, EuroGP.

[18]  James R. Levenick,et al.  Metabits: Generic Endogenous Crossover Control , 1995, International Conference on Genetic Algorithms.

[19]  Bruce Edmonds,et al.  Meta-Genetic Programming: Co-evolving the Operators of Variation , 2001 .

[20]  Jürgen Branke,et al.  Memory enhanced evolutionary algorithms for changing optimization problems , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[21]  Alan Blair,et al.  A structure preserving crossover in grammatical evolution , 2005, 2005 IEEE Congress on Evolutionary Computation.

[22]  Matthew P. Evett,et al.  Numeric Mutation Improves the Discovery of Numeric Constants in Genetic Programming , 2007 .

[23]  Conor Ryan,et al.  Grammatical evolution , 2007, GECCO '07.

[24]  Peter J. Angeline,et al.  Two self-adaptive crossover operators for genetic programming , 1996 .

[25]  Jim Smith,et al.  Recombination strategy adaptation via evolution of gene linkage , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[26]  Wolfgang Banzhaf,et al.  Genotype-Phenotype-Mapping and Neutral Variation - A Case Study in Genetic Programming , 1994, PPSN.