Identification of distributed-parameter systems with missing data

In this paper we address the identification of linear distributed-parameter systems with missing data. This setting is relevant in, for instance, sensor networks, where data are frequently lost due to transmission errors. We consider an identification problem where the only information available about the system are the input-output measurements from a set of sensors placed at known fixed locations in the distributed-parameter system. The model is represented as a set of coupled multi-input, single-output autoregressive with exogenous input (ARX) submodels. Total least-squares estimation is employed to obtain an unbiased parameter estimate in the presence of sensor noise. The missing samples are reconstructed with the help of an iterative algorithm. To approximate the value of the variables of interest in locations with no sensors, we use cubic B-splines to preserve the continuity of the first-order and second-order spatial derivatives. The method is applied to a simulated one-dimensional heat-conduction process.

[1]  Stephen A. Billings,et al.  Identification of coupled map lattice models of complex spatio-temporal patterns , 2001 .

[2]  Charalabos C. Doumanidis,et al.  Temperature distribution control in scanned thermal processing of thin circular parts , 2001, IEEE Trans. Control. Syst. Technol..

[3]  Stephen A. Billings,et al.  State-Space Reconstruction and Spatio-Temporal Prediction of Lattice Dynamical Systems , 2007, IEEE Transactions on Automatic Control.

[4]  Parlitz,et al.  Prediction of spatiotemporal time series based on reconstructed local states , 2000, Physical review letters.

[5]  K. Hoo,et al.  Finite dimensional modeling and control of distributed parameter systems , 2002, Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301).

[6]  J. A. Ramos,et al.  Identification of nonlinear systems using a B-splines parametric subspace approach , 1999, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).

[7]  J. Navarro-Pedreño Numerical Methods for Least Squares Problems , 1996 .

[8]  W. Ray,et al.  Identification and control of distributed parameter systems by means of the singular value decomposition , 1995 .

[9]  Alf J. Isaksson,et al.  Multiple Optima in Identification of ARX Models Subject to Missing Data , 2002, EURASIP J. Adv. Signal Process..

[10]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[11]  Paul Dierckx,et al.  Curve and surface fitting with splines , 1994, Monographs on numerical analysis.

[12]  Alex Simpkins,et al.  System Identification: Theory for the User, 2nd Edition (Ljung, L.; 1999) [On the Shelf] , 2012, IEEE Robotics & Automation Magazine.

[13]  F. Ding,et al.  Least‐squares parameter estimation for systems with irregularly missing data , 2009 .

[14]  Igor Grabec,et al.  Statistical Approach to Modeling of Spatiotemporal Dynamics , 2001, Int. J. Bifurc. Chaos.

[15]  Chenkun Qi,et al.  Modeling of distributed parameter systems for applications—A synthesized review from time–space separation , 2010 .

[16]  Stephen A. Billings,et al.  Identification of Partial Differential Equation Models for Continuous Spatio-Temporal Dynamical Systems , 2006, IEEE Transactions on Circuits and Systems II: Express Briefs.

[17]  M. J. Bunner,et al.  Identification of continuous, spatiotemporal systems. , 1998 .

[18]  Stephen A. Billings,et al.  Direct parameter identification of distributed parameter systems , 2000, Int. J. Syst. Sci..

[19]  Sirish L. Shah,et al.  Identification of chemical processes with irregular output sampling , 2006 .