Nonparametric inference via bootstrapping the debiased estimator
暂无分享,去创建一个
[1] M. Wand,et al. ASYMPTOTICS FOR GENERAL MULTIVARIATE KERNEL DENSITY DERIVATIVE ESTIMATORS , 2011 .
[2] N. Bissantz,et al. Confidence bands for inverse regression models , 2010 .
[3] Y. Wadadekar,et al. Submitted to ApJS Preprint typeset using L ATEX style emulateapj v. 10/09/06 THE SIXTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY , 2022 .
[4] Gunnar E. Carlsson,et al. Topology and data , 2009 .
[5] Rebecca Nugent,et al. Stability of density-based clustering , 2010, J. Mach. Learn. Res..
[6] Nicolai Bissantz,et al. Asymptotic normality and confidence intervals for inverse regression models with convolution-type operators , 2009, J. Multivar. Anal..
[7] M. Hazelton,et al. Cross‐validation Bandwidth Matrices for Multivariate Kernel Density Estimation , 2005 .
[8] L. Wasserman. All of Nonparametric Statistics , 2005 .
[9] M. C. Jones,et al. A reliable data-based bandwidth selection method for kernel density estimation , 1991 .
[10] Kengo Kato,et al. Central limit theorems and bootstrap in high dimensions , 2014, 1412.3661.
[11] W. M. Wood-Vasey,et al. SDSS-III: MASSIVE SPECTROSCOPIC SURVEYS OF THE DISTANT UNIVERSE, THE MILKY WAY, AND EXTRA-SOLAR PLANETARY SYSTEMS , 2011, 1101.1529.
[12] Yen-Chi Chen,et al. A tutorial on kernel density estimation and recent advances , 2017, 1704.03924.
[13] D. W. Scott,et al. Cross-Validation of Multivariate Densities , 1994 .
[14] Victor Chernozhukov,et al. Anti-concentration and honest, adaptive confidence bands , 2013 .
[15] Cun-Hui Zhang,et al. Confidence intervals for low dimensional parameters in high dimensional linear models , 2011, 1110.2563.
[16] Jeffrey S. Racine,et al. CROSS-VALIDATED LOCAL LINEAR NONPARAMETRIC REGRESSION , 2004 .
[17] Uwe Einmahl,et al. Uniform in bandwidth consistency of kernel-type function estimators , 2005 .
[18] Harold D. Chiang,et al. A Unified Robust Bootstrap Method for Sharp/Fuzzy Mean/Quantile Regression Discontinuity/Kink Designs , 2017 .
[19] Sivaraman Balakrishnan,et al. Confidence sets for persistence diagrams , 2013, The Annals of Statistics.
[20] Yen-Chi Chen,et al. Density Level Sets: Asymptotics, Inference, and Visualization , 2015, 1504.05438.
[21] Tarn Duong,et al. Local significant differences from nonparametric two-sample tests , 2013 .
[22] Jörg Polzehl,et al. Simultaneous bootstrap confidence bands in nonparametric regression , 1998 .
[23] Yingcun Xia,et al. Asymptotic Behavior of Bandwidth Selected by the Cross-Validation Method for Local Polynomial Fitting , 2002 .
[24] Max H. Farrell,et al. Coverage Error Optimal Confidence Intervals , 2018 .
[25] V. Cardone,et al. Colour and stellar population gradients in galaxies: correlation with mass , 2010, Monthly Notices of the Royal Astronomical Society.
[26] Christopher R. Genovese,et al. Asymptotic theory for density ridges , 2014, 1406.5663.
[27] Wenceslao González-Manteiga,et al. PLUG‐IN ESTIMATION OF GENERAL LEVEL SETS , 2006 .
[28] D. W. Scott,et al. Multivariate Density Estimation, Theory, Practice and Visualization , 1992 .
[29] J. Brinkmann,et al. New York University Value-Added Galaxy Catalog: A Galaxy Catalog Based on New Public Surveys , 2005 .
[30] Jianqing Fan. Local Linear Regression Smoothers and Their Minimax Efficiencies , 1993 .
[31] Tarn Duong,et al. ks: Kernel Density Estimation and Kernel Discriminant Analysis for Multivariate Data in R , 2007 .
[32] Michael H. Neumann. Automatic bandwidth choice and confidence intervals in nonparametric regression , 1995 .
[33] Frédéric Chazal,et al. Stochastic Convergence of Persistence Landscapes and Silhouettes , 2013, J. Comput. Geom..
[34] Kjell A. Doksum,et al. Uniform Confidence Bounds for Regression Based on a Simple Moving Average , 1985 .
[35] P. Hall. On Bootstrap Confidence Intervals in Nonparametric Regression , 1992 .
[36] David Hinkley,et al. Bootstrap Methods: Another Look at the Jackknife , 2008 .
[37] S. Weisberg. Applied Linear Regression , 1981 .
[38] Kengo Kato,et al. Gaussian approximations and multiplier bootstrap for maxima of sums of high-dimensional random vectors , 2012, 1212.6906.
[39] Robert P. Lieli,et al. Estimating Conditional Average Treatment Effects , 2014 .
[40] Yingcun Xia,et al. UNIFORM BAHADUR REPRESENTATION FOR LOCAL POLYNOMIAL ESTIMATES OF M-REGRESSION AND ITS APPLICATION TO THE ADDITIVE MODEL , 2007, Econometric Theory.
[41] R. R. Bahadur. A Note on Quantiles in Large Samples , 1966 .
[42] S. Panchapakesan,et al. Measurement, Regression, and Calibration (Philip J. Brown) , 1995, SIAM Rev..
[43] D. York,et al. The Overdensities of Galaxy Environments as a Function of Luminosity and Color , 2002, astro-ph/0212085.
[44] L. Wasserman,et al. On the path density of a gradient field , 2008, 0805.4141.
[45] S. Sheather. Density Estimation , 2004 .
[47] Adel Javanmard,et al. Confidence intervals and hypothesis testing for high-dimensional regression , 2013, J. Mach. Learn. Res..
[48] W. Härdle,et al. Bootstrapping in Nonparametric Regression: Local Adaptive Smoothing and Confidence Bands , 1988 .
[49] G. Michailidis,et al. A two-stage hybrid procedure for estimating an inverse regression function , 2011, 1105.3018.
[50] L. Wasserman. Topological Data Analysis , 2016, 1609.08227.
[51] Yingcun Xia,et al. Bias‐corrected confidence bands in nonparametric regression , 1998 .
[52] Wolfgang Härdle,et al. BOOTSTRAP INFERENCE IN SEMIPARAMETRIC GENERALIZED ADDITIVE MODELS , 2004, Econometric Theory.
[53] D. Freedman. Bootstrapping Regression Models , 1981 .
[54] Inge Koch,et al. Highest Density Difference Region Estimation with Application to Flow Cytometric Data , 2009, Biometrical journal. Biometrische Zeitschrift.
[55] Yu-Chin Hsu,et al. (Preliminary: please do not cite or quote without permission.) , 2022 .
[56] E. al.,et al. The Sloan Digital Sky Survey: Technical summary , 2000, astro-ph/0006396.
[57] Changbao Wu,et al. Jackknife, Bootstrap and Other Resampling Methods in Regression Analysis , 1986 .
[58] L. Gleser. Measurement, Regression, and Calibration , 1996 .
[59] Sokbae Lee,et al. Nonparametric Tests of Conditional Treatment Effects , 2009 .
[60] A. Tsybakov. On nonparametric estimation of density level sets , 1997 .
[61] Wolfgang Härdle,et al. Better Bootstrap Confidence Intervals for Regression Curve Estimation , 1995 .
[62] Joseph P. Romano. Bootstrapping the mode , 1988 .
[63] Bootstrapping Regression Models 21.1 Bootstrapping Basics , .
[64] R. Servien,et al. Nonparametric estimation of regression level sets , 2011 .
[65] S. Geer,et al. On asymptotically optimal confidence regions and tests for high-dimensional models , 2013, 1303.0518.
[67] Peter Hall,et al. A simple bootstrap method for constructing nonparametric confidence bands for functions , 2013, 1309.4864.
[68] W. Polonik. Measuring Mass Concentrations and Estimating Density Contour Clusters-An Excess Mass Approach , 1995 .
[69] Marie-Anne Gruet,et al. A nonparametric calibration analysis , 1996 .
[70] Song Xi Chen,et al. Empirical likelihood confidence intervals for nonparametric density estimation , 1996 .
[71] P. Hall. Large Sample Optimality of Least Squares Cross-Validation in Density Estimation , 1983 .
[72] Yen-Chi Chen,et al. Generalized cluster trees and singular measures , 2016, The Annals of Statistics.
[73] Franco Magno,et al. A statistical overview on univariate calibration, inverse regression, and detection limits: Application to gas chromatography/mass spectrometry technique. , 2007, Mass spectrometry reviews.
[74] Xiao-Hua Zhou,et al. Treatment selection in a randomized clinical trial via covariate-specific treatment effect curves , 2017, Statistical methods in medical research.
[75] C. Conselice,et al. How does galaxy environment matter? The relationship between galaxy environments, colour and stellar mass at 0.4 < z < 1 in the Palomar/DEEP2 survey , 2010, 1009.3189.
[76] James Stephen Marron,et al. BOOTSTRAP SIMULTANEOUS ERROR BARS FOR NONPARAMETRIC REGRESSION , 1991 .
[77] P. Hall. EFFECT OF BIAS ESTIMATION ON COVERAGE ACCURACY OF BOOTSTRAP CONFIDENCE INTERVALS FOR A PROBABILITY DENSITY , 1992 .
[78] E. Giné,et al. Rates of strong uniform consistency for multivariate kernel density estimators , 2002 .
[79] Sivaraman Balakrishnan,et al. Statistical Inference for Cluster Trees , 2016, NIPS.
[80] Kengo Kato,et al. Gaussian approximation of suprema of empirical processes , 2014 .
[81] Zeljko Ivezic,et al. The Environment of Galaxies at Low Redshift , 2008, 0801.0312.
[82] Kengo Kato,et al. Comparison and anti-concentration bounds for maxima of Gaussian random vectors , 2013, 1301.4807.
[83] C. Loader,et al. Simultaneous Confidence Bands for Linear Regression and Smoothing , 1994 .
[84] Enno Mammen,et al. Confidence regions for level sets , 2013, J. Multivar. Anal..
[85] Larry A. Wasserman,et al. Nonparametric Ridge Estimation , 2012, ArXiv.
[86] B. Cadre. Kernel estimation of density level sets , 2005, math/0501221.
[87] S. Roweis,et al. An Improved Photometric Calibration of the Sloan Digital Sky Survey Imaging Data , 2007, astro-ph/0703454.
[88] Max H. Farrell,et al. On the Effect of Bias Estimation on Coverage Accuracy in Nonparametric Inference , 2015, Journal of the American Statistical Association.
[89] M. Wand,et al. EXACT MEAN INTEGRATED SQUARED ERROR , 1992 .
[90] Scott M. Berry,et al. Bayesian Smoothing and Regression Splines for Measurement Error Problems , 2002 .
[91] C. Genovese,et al. Detecting Effects of Filaments on Galaxy Properties in the Sloan Digital Sky Survey III , 2015, 1509.06376.
[92] E. Nadaraya. On Estimating Regression , 1964 .
[93] Herbert Edelsbrunner,et al. Persistent Homology: Theory and Practice , 2013 .
[94] Yu-Chin Hsu,et al. Robust uniform inference for quantile treatment effects in regression discontinuity designs , 2017, Journal of Econometrics.
[95] C. D. Kemp,et al. Density Estimation for Statistics and Data Analysis , 1987 .
[96] Paul L. Speckman,et al. Confidence bands in nonparametric regression , 1993 .
[97] Christopher R. Genovese,et al. Cosmic web reconstruction through density ridges: method and algorithm , 2015, 1501.05303.