Data Structures for Halfplane Proximity Queries and Incremental Voronoi Diagrams

We consider preprocessing a set S of n points in convex position in the plane into a data structure supporting queries of the following form: given a point q and a directed line $$\ell $$ℓ in the plane, report the point of S that is farthest from (or, alternatively, nearest to) the point q among all points to the left of line $$\ell $$ℓ. We present two data structures for this problem. The first data structure uses $$O(n^{1+\varepsilon })$$O(n1+ε) space and preprocessing time, and answers queries in $$O(2^{1/\varepsilon }\log n)$$O(21/εlogn) time, for any $$0< \varepsilon < 1$$0<ε<1. The second data structure uses $$O(n \log ^3 n)$$O(nlog3n) space and polynomial preprocessing time, and answers queries in $$O(\log n)$$O(logn) time. These are the first solutions to the problem with $$O(\log n)$$O(logn) query time and $$o(n^2)$$o(n2) space. The second data structure uses a new representation of nearest- and farthest-point Voronoi diagrams of points in convex position. This representation supports the insertion of new points in clockwise order using only $$O(\log n)$$O(logn) amortized pointer changes, in addition to $$O(\log n)$$O(logn)-time point-location queries, even though every such update may make $$\Theta (n)$$Θ(n) combinatorial changes to the Voronoi diagram. This data structure is the first demonstration that deterministically and incrementally constructed Voronoi diagrams can be maintained in o(n) amortized pointer changes per operation while keeping $$O(\log n)$$O(logn)-time point-location queries.

[1]  Robert B Mc Master,et al.  Generalization in Digital Cartography Resource Publications in Geography , 1992 .

[2]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .

[3]  David Eppstein The farthest point Delaunay triangulation minimizes angles , 1992 .

[4]  Mahes Visvalingam Digital cartography , 1990, Comput. Aided Des..

[5]  Mark H. Overmars,et al.  The Design of Dynamic Data Structures , 1987, Lecture Notes in Computer Science.

[6]  Seth Pettie,et al.  Applications of forbidden 0-1 matrices to search tree and path compression-based data structures , 2010, SODA '10.

[7]  Joseph O'Rourke,et al.  Computational Geometry in C. , 1995 .

[8]  Robert E. Tarjan,et al.  Self-adjusting binary search trees , 1985, JACM.

[9]  Timothy M. Chan A dynamic data structure for 3-D convex hulls and 2-D nearest neighbor queries , 2010, J. ACM.

[10]  Alexander Wolff,et al.  Farthest-point queries with geometric and combinatorial constraints , 2004, Comput. Geom..

[11]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[12]  Leonidas J. Guibas,et al.  Optimal Point Location in a Monotone Subdivision , 1986, SIAM J. Comput..

[13]  Robert E. Tarjan,et al.  Making data structures persistent , 1986, STOC '86.

[14]  J. O´Rourke,et al.  Computational Geometry in C: Arrangements , 1998 .

[15]  Roberto Tamassia,et al.  Dynamic algorithms in computational geometry , 1992, Proc. IEEE.

[16]  Joseph O'Rourke,et al.  Computational geometry in C (2nd ed.) , 1998 .

[17]  Robert B McMaster,et al.  Generalization in Digital Cartography , 2008 .

[18]  Robert E. Tarjan,et al.  A data structure for dynamic trees , 1981, STOC '81.

[19]  John Iacono,et al.  Incremental Voronoi Diagrams , 2017, Discret. Comput. Geom..

[20]  P. Giblin Computational geometry: algorithms and applications (2nd edn.), by M. de Berg, M. van Kreveld, M. Overmars and O. Schwarzkopf. Pp. 367. £20.50. 2000. ISBN 3 540 65620 0 (Springer-Verlag). , 2001, The Mathematical Gazette.

[21]  Leonidas J. Guibas,et al.  A linear-time algorithm for computing the voronoi diagram of a convex polygon , 1989, Discret. Comput. Geom..

[22]  Jeffrey S. Torguson,et al.  Cartography , 2019, Dictionary of Geotourism.