Early science with the Large Millimetre Telescope: fragmentation of molecular clumps in the Galaxy

Sensitive, imaging observations of the 1.1 mm dust continuum emission from a 1 deg^2 area collected with the AzTEC bolometer camera on the Large Millimeter Telescope are presented. A catalog of 1545 compact sources is constructed based on a Wiener-optimization filter. These sources are linked to larger clump structures identified in the Bolocam Galactic Plane Survey. Hydrogen column densities are calculated for all sources and mass and mean volume densities are derived for the subset of sources for which kinematic distances can be assigned. The AzTEC sources are localized, high density peaks within the massive clumps of molecular clouds and comprise 5-15% of the clump mass. We examine the role of the gravitational instability in generating these fragments by comparing the mass of embedded AzTEC sources to the Jeans' mass of the parent BGPS object. For sources with distances less than 6 kpc the fragment masses are comparable to the clump Jeans' mass, despite having isothermal Mach numbers between 1.6 and 7.2. AzTEC sources linked to ultra-compact HII regions have mass surface densities greater than the critical value implied by the mass-size relationship of infrared dark clouds with high mass star formation while AzTEC sources associated with Class II methanol masers have mass surface densities greater than 0.7 g cm^{-2} that approaches the proposed threshold required to form massive stars.

[1]  R. Smith,et al.  Simultaneous low- and high-mass star formation in a massive protocluster : ALMA observations of G11.92-0.61 , 2017, 1701.02802.

[2]  R. Indebetouw,et al.  THE MASSIVE PROTOSTELLAR CLUSTER NGC 6334I AT 220 au RESOLUTION: DISCOVERY OF FURTHER MULTIPLICITY, DIVERSITY, AND A HOT MULTI-CORE , 2016, 1609.07470.

[3]  N. Scoville,et al.  EVOLUTION OF MOLECULAR AND ATOMIC GAS PHASES IN THE MILKY WAY , 2016, 1604.01053.

[4]  R. Klessen,et al.  Continuum sources from the THOR survey between 1 and 2 GHz , 2016, 1601.03427.

[5]  A. Ginsburg,et al.  THE BOLOCAM GALACTIC PLANE SURVEY. XIV. PHYSICAL PROPERTIES OF MASSIVE STARLESS AND STAR-FORMING CLUMPS , 2015, 1511.08810.

[6]  T. Dame,et al.  Molecular Clouds in the Milky Way , 2015 .

[7]  G. Fuller,et al.  The 6-GHz methanol multibeam maser catalogue - V. Galactic longitudes 20 ◦ -60 ◦ , 2015 .

[8]  N. Peretto,et al.  The initial conditions of stellar protocluster formation - II. A catalogue of starless and protostellar clumps embedded in IRDCs in the Galactic longitude range 15° ≤ l ≤ 55° , 2015, 1506.05472.

[9]  A. Ginsburg,et al.  THE BOLOCAM GALACTIC PLANE SURVEY. XIII. PHYSICAL PROPERTIES AND MASS FUNCTIONS OF DENSE MOLECULAR CLOUD STRUCTURES , 2015, 1504.01388.

[10]  A. Ginsburg,et al.  THE BOLOCAM GALACTIC PLANE SURVEY. XI. TEMPERATURES AND SUBSTRUCTURE OF GALACTIC CLUMPS BASED ON 350 μM OBSERVATIONS , 2015, 1501.05965.

[11]  Adam Ginsburg,et al.  THE BOLOCAM GALACTIC PLANE SURVEY. XII. DISTANCE CATALOG EXPANSION USING KINEMATIC ISOLATION OF DENSE MOLECULAR CLOUD STRUCTURES WITH 13CO(1–0) , 2014, 1411.2591.

[12]  Leiden,et al.  ATLASGAL — towards a complete sample of massive star forming clumps ⋆ , 2014, 1406.5078.

[13]  K. Menten,et al.  SUBMILLIMETER ARRAY AND VERY LARGE ARRAY OBSERVATIONS IN THE HYPERCOMPACT H ii REGION G35.58-0.03 , 2014, 1401.4962.

[14]  M. Heyer,et al.  THE DENSE GAS MASS FRACTION OF MOLECULAR CLOUDS IN THE MILKY WAY , 2013, 1312.0643.

[15]  A. Ginsburg,et al.  THE BOLOCAM GALACTIC PLANE SURVEY. X. A COMPLETE SPECTROSCOPIC CATALOG OF DENSE MOLECULAR GAS OBSERVED TOWARD 1.1 mm DUST CONTINUUM SOURCES WITH 7.°5 ⩽ l ⩽ 194° , 2013, 1308.4149.

[16]  Adam Ginsburg,et al.  THE BOLOCAM GALACTIC PLANE SURVEY. IX. DATA RELEASE 2 AND OUTER GALAXY EXTENSION , 2013, 1305.6622.

[17]  T. A. Perera,et al.  An Efficient and Optimal Filter for Identifying Point Sources in Millimeter/Submillimeter Wavelength Sky Maps , 2013, 1304.0413.

[18]  L. Mundy,et al.  THE COORDINATED RADIO AND INFRARED SURVEY FOR HIGH-MASS STAR FORMATION. II. SOURCE CATALOG , 2012, 1211.7116.

[19]  M. Lombardi,et al.  STAR FORMATION RATES IN MOLECULAR CLOUDS AND THE NATURE OF THE EXTRAGALACTIC SCALING RELATIONS , 2011, 1112.4466.

[20]  E. Rosolowsky,et al.  THE BOLOCAM GALACTIC PLANE SURVEY. VII. CHARACTERIZING THE PROPERTIES OF MASSIVE STAR-FORMING REGIONS , 2011, 1108.1812.

[21]  L. Allen,et al.  A CORRELATION BETWEEN SURFACE DENSITIES OF YOUNG STELLAR OBJECTS AND GAS IN EIGHT NEARBY MOLECULAR CLOUDS , 2011, 1107.0966.

[22]  J. Rathborne,et al.  PHYSICAL PROPERTIES AND GALACTIC DISTRIBUTION OF MOLECULAR CLOUDS IDENTIFIED IN THE GALACTIC RING SURVEY , 2010, 1010.2798.

[23]  T. Steiman-Cameron,et al.  COBE AND THE GALACTIC INTERSTELLAR MEDIUM: GEOMETRY OF THE SPIRAL ARMS FROM FIR COOLING LINES , 2010 .

[24]  T. Pillai,et al.  HOW MANY INFRARED DARK CLOUDS CAN FORM MASSIVE STARS AND CLUSTERS? , 2010, 1009.1617.

[25]  N. Evans,et al.  THE STAR FORMATION RATE AND GAS SURFACE DENSITY RELATION IN THE MILKY WAY: IMPLICATIONS FOR EXTRAGALACTIC STUDIES , 2010, 1009.1621.

[26]  N. Peretto,et al.  The initial conditions of stellar protocluster formation - I. A catalogue of Spitzer dark clouds , 2009, 0906.3493.

[27]  G. A. Moellenbrock,et al.  TRIGONOMETRIC PARALLAXES OF MASSIVE STAR-FORMING REGIONS. VI. GALACTIC STRUCTURE, FUNDAMENTAL PARAMETERS, AND NONCIRCULAR MOTIONS , 2009, 0902.3913.

[28]  K. Souccar,et al.  The AzTEC mm-wavelength camera , 2008, 0801.2783.

[29]  C. I. O. Technology.,et al.  AzTEC millimetre survey of the COSMOS field – I. Data reduction and source catalogue , 2008, 0801.2779.

[30]  C. McKee,et al.  A minimum column density of 1 g cm-2 for massive star formation , 2008, Nature.

[31]  K. Menten,et al.  Interferometric multi-wavelength (sub)millimeter continuum study of the young high-mass protocluster IRAS 05358+3543 , 2007, astro-ph/0702560.

[32]  M. Krumholz,et al.  Slow Star Formation in Dense Gas: Evidence and Implications , 2006, astro-ph/0606277.

[33]  J. Rathborne,et al.  The Boston University-Five College Radio Astronomy Observatory Galactic Ring Survey , 2005, astro-ph/0602160.

[34]  P. Solomon,et al.  Connecting Dense Gas Tracers of Star Formation in our Galaxy to High-z Star Formation , 2005, astro-ph/0511424.

[35]  R. Klessen,et al.  The Stellar Mass Spectrum from Non-Isothermal Gravoturbulent Fragmentation , 2004, astro-ph/0410351.

[36]  P. Solomon,et al.  The Star Formation Rate and Dense Molecular Gas in Galaxies , 2003, astro-ph/0310339.

[37]  C. McKee,et al.  The Formation of Massive Stars from Turbulent Cores , 2002, astro-ph/0206037.

[38]  P. Padoan,et al.  The Stellar Initial Mass Function from Turbulent Fragmentation , 2000, astro-ph/0011465.

[39]  Karl M. Menten,et al.  The discovery of a new, very strong, and widespread interstellar methanol maser line , 1991 .

[40]  F. Shu,et al.  Molecular cloud cores and bimodal star formation , 1989 .

[41]  F. Schloerb,et al.  1300 micron continuum and C18O line mapping of the giant molecular cloud cores in Orion, W49, and W51. , 1987, The Astrophysical journal.