Coupled Variational Image Decomposition and Restoration Model for Blurred Cartoon-Plus-Texture Images With Missing Pixels

In this paper, we develop a decomposition model to restore blurred images with missing pixels. Our assumption is that the underlying image is the superposition of cartoon and texture components. We use the total variation norm and its dual norm to regularize the cartoon and texture, respectively. We recommend an efficient numerical algorithm based on the splitting versions of augmented Lagrangian method to solve the problem. Theoretically, the existence of a minimizer to the energy function and the convergence of the algorithm are guaranteed. In contrast to recently developed methods for deblurring images, the proposed algorithm not only gives the restored image, but also gives a decomposition of cartoon and texture parts. These two parts can be further used in segmentation and inpainting problems. Numerical comparisons between this algorithm and some state-of-the-art methods are also reported.

[1]  Bingsheng He,et al.  Linearized Alternating Direction Method with Gaussian Back Substitution for Separable Convex Programming , 2011 .

[2]  Michael P. Friedlander,et al.  Probing the Pareto Frontier for Basis Pursuit Solutions , 2008, SIAM J. Sci. Comput..

[3]  Tony F. Chan,et al.  Euler's Elastica and Curvature-Based Inpainting , 2003, SIAM J. Appl. Math..

[4]  Raymond H. Chan,et al.  Alternating Direction Method for Image Inpainting in Wavelet Domains , 2011, SIAM J. Imaging Sci..

[5]  Zuowei Shen Affine systems in L 2 ( IR d ) : the analysis of the analysis operator , 1995 .

[6]  Andy M. Yip,et al.  Simultaneous total variation image inpainting and blind deconvolution , 2005, Int. J. Imaging Syst. Technol..

[7]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[8]  John Wright,et al.  RASL: Robust Alignment by Sparse and Low-Rank Decomposition for Linearly Correlated Images , 2012, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  Stephen Gould,et al.  Projected Subgradient Methods for Learning Sparse Gaussians , 2008, UAI.

[10]  Michael Elad,et al.  Submitted to Ieee Transactions on Image Processing Image Decomposition via the Combination of Sparse Representations and a Variational Approach , 2022 .

[11]  Jianhong Shen,et al.  Deblurring images: Matrices, spectra, and filtering , 2007, Math. Comput..

[12]  I. Daubechiesa,et al.  Variational image restoration by means of wavelets : Simultaneous decomposition , deblurring , and denoising , 2005 .

[13]  Yves Meyer,et al.  Oscillating Patterns in Image Processing and Nonlinear Evolution Equations: The Fifteenth Dean Jacqueline B. Lewis Memorial Lectures , 2001 .

[14]  Antonin Chambolle,et al.  Dual Norms and Image Decomposition Models , 2005, International Journal of Computer Vision.

[15]  Stanley Osher,et al.  Modeling Textures with Total Variation Minimization and Oscillating Patterns in Image Processing , 2003, J. Sci. Comput..

[16]  Bingsheng He,et al.  Parallel splitting augmented Lagrangian methods for monotone structured variational inequalities , 2009, Comput. Optim. Appl..

[17]  Stanley Osher,et al.  Image Decomposition and Restoration Using Total Variation Minimization and the H1 , 2003, Multiscale Model. Simul..

[18]  M. Nikolova An Algorithm for Total Variation Minimization and Applications , 2004 .

[19]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[20]  Tony F. Chan,et al.  Structure-Texture Image Decomposition—Modeling, Algorithms, and Parameter Selection , 2006, International Journal of Computer Vision.

[21]  S. Osher,et al.  IMAGE DECOMPOSITION AND RESTORATION USING TOTAL VARIATION MINIMIZATION AND THE H−1 NORM∗ , 2002 .

[22]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[23]  L. Vese,et al.  IMAGE RECOVERY USING FUNCTIONS OF BOUNDED VARIATION AND SOBOLEV SPACES OF NEGATIVE DIFFERENTIABILITY , 2009 .

[24]  Gabriel Peyré,et al.  Locally Parallel Texture Modeling , 2011, SIAM J. Imaging Sci..

[25]  John Wright,et al.  RASL: Robust alignment by sparse and low-rank decomposition for linearly correlated images , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[26]  Xiaoming Yuan,et al.  Recovering Low-Rank and Sparse Components of Matrices from Incomplete and Noisy Observations , 2011, SIAM J. Optim..

[27]  Xiaoming Yuan,et al.  A splitting method for separable convex programming , 2015 .

[28]  Mohamed-Jalal Fadili,et al.  Image Decomposition and Separation Using Sparse Representations: An Overview , 2010, Proceedings of the IEEE.

[29]  J. Borwein,et al.  Two-Point Step Size Gradient Methods , 1988 .

[30]  G. Burton Sobolev Spaces , 2013 .

[31]  A. Ron,et al.  Affine Systems inL2(Rd): The Analysis of the Analysis Operator , 1997 .

[32]  Guillermo Sapiro,et al.  Image inpainting , 2000, SIGGRAPH.

[33]  Michael K. Ng,et al.  Solving Constrained Total-variation Image Restoration and Reconstruction Problems via Alternating Direction Methods , 2010, SIAM J. Sci. Comput..

[34]  B. Mercier,et al.  A dual algorithm for the solution of nonlinear variational problems via finite element approximation , 1976 .

[35]  J. Moreau Proximité et dualité dans un espace hilbertien , 1965 .

[36]  Guillermo Sapiro,et al.  Simultaneous structure and texture image inpainting , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[37]  Patrick L. Combettes,et al.  Signal Recovery by Proximal Forward-Backward Splitting , 2005, Multiscale Model. Simul..

[38]  Antonin Chambolle,et al.  Image Decomposition into a Bounded Variation Component and an Oscillating Component , 2005, Journal of Mathematical Imaging and Vision.

[39]  Jian-Feng Cai,et al.  Simultaneous cartoon and texture inpainting , 2010 .