Entanglement activation from quantum coherence and superposition

Quantum entanglement and coherence are two fundamental features of nature, arising from the superposition principle of quantum mechanics. While considered as puzzling phenomena in the early days of quantum theory, it is only very recently that entanglement and coherence have been recognized as resources for the emerging quantum technologies, including quantum metrology, quantum communication, and quantum computing. In this work we study the limitations for the interconversion between coherence and entanglement. We prove a fundamental no-go theorem, stating that a general resource theory of superposition does not allow for entanglement activation. By constructing a CNOT gate as a free operation, we experimentally show that such activation is possible within the more constrained framework of quantum coherence. Our results provide new insights into the interplay between coherence and entanglement, representing a substantial step forward for solving longstanding open questions in quantum information science.

[1]  Guang-Can Guo,et al.  Experimental Cyclic Interconversion between Coherence and Quantum Correlations. , 2017, Physical review letters.

[2]  Dong He,et al.  Satellite-based entanglement distribution over 1200 kilometers , 2017, Science.

[3]  Gerardo Adesso,et al.  Converting multilevel nonclassicality into genuine multipartite entanglement , 2017, 1704.04153.

[4]  M. Plenio,et al.  Resource Theory of Superposition. , 2017, Physical review letters.

[5]  M. Plenio,et al.  Colloquium: quantum coherence as a resource , 2016, 1609.02439.

[6]  D. Tong,et al.  Alternative framework for quantifying coherence , 2016, 1606.03181.

[7]  R. Spekkens,et al.  How to quantify coherence: Distinguishing speakable and unspeakable notions , 2016, 1602.08049.

[8]  Chi-Kwong Li,et al.  Quantifying the coherence of pure quantum states , 2016, 1601.06269.

[9]  M. B. Plenio,et al.  Coherent control of quantum systems as a resource theory , 2015, 1512.07486.

[10]  Mark Hillery,et al.  Coherence as a resource in decision problems: The Deutsch-Jozsa algorithm and a variation , 2015, 1512.01874.

[11]  V. Vedral,et al.  Quantum processes which do not use coherence , 2015, 1512.02085.

[12]  Maciej Lewenstein,et al.  Trace distance measure of coherence , 2015, ArXiv.

[13]  Davide Girolami,et al.  Converting Coherence to Quantum Correlations. , 2015, Physical review letters.

[14]  Maciej Lewenstein,et al.  Towards Resource Theory of Coherence in Distributed Scenarios , 2015, 1509.07456.

[15]  G. Adesso,et al.  Assisted Distillation of Quantum Coherence. , 2015, Physical review letters.

[16]  A. Winter,et al.  Operational Resource Theory of Coherence. , 2015, Physical review letters.

[17]  M. Plenio,et al.  Converting Nonclassicality into Entanglement. , 2015, Physical review letters.

[18]  Gerardo Adesso,et al.  Measuring Quantum Coherence with Entanglement. , 2015, Physical review letters.

[19]  Heng Fan,et al.  Fidelity and trace-norm distances for quantifying coherence , 2014, 1410.8327.

[20]  M. Plenio,et al.  Quantifying coherence. , 2013, Physical review letters.

[21]  S. Huelga,et al.  Vibrations, quanta and biology , 2013, 1307.3530.

[22]  T. Paterek,et al.  The classical-quantum boundary for correlations: Discord and related measures , 2011, 1112.6238.

[23]  G. Vallone,et al.  Integrated photonic quantum gates for polarization qubits , 2011, Nature communications.

[24]  R. Spekkens,et al.  The theory of manipulations of pure state asymmetry: I. Basic tools, equivalence classes and single copy transformations , 2011, 1104.0018.

[25]  S. Lloyd,et al.  Advances in quantum metrology , 2011, 1102.2318.

[26]  D. Bruß,et al.  Linking a distance measure of entanglement to its convex roof , 2010, 1006.3077.

[27]  Dong Yang,et al.  Experimental free-space quantum teleportation , 2010 .

[28]  Keiji Sasaki,et al.  Demonstration of an optical quantum controlled-NOT gate without path interference. , 2005, Physical review letters.

[29]  H. Weinfurter,et al.  Linear optics controlled-phase gate made simple. , 2005, Physical review letters.

[30]  M. Horodecki,et al.  Partial quantum information , 2005, Nature.

[31]  H. Hofmann Complementary classical fidelities as an efficient criterion for the evaluation of experimentally realized quantum operations. , 2004, Physical review letters.

[32]  A. Winter,et al.  ON THE EXISTENCE OF PHYSICAL TRANSFORMATIONS BETWEEN SETS OF QUANTUM STATES , 2003, quant-ph/0307227.

[33]  P. Goldbart,et al.  Geometric measure of entanglement and applications to bipartite and multipartite quantum states , 2003, quant-ph/0307219.

[34]  Yoon-Ho Kim,et al.  Quantum interference with beamlike type-II spontaneous parametric down-conversion , 2003, InternationalQuantum Electronics Conference, 2004. (IQEC)..

[35]  Shengjun Wu,et al.  What is quantum entanglement , 2003 .

[36]  W. Zurek Decoherence, einselection, and the quantum origins of the classical , 2001, quant-ph/0105127.

[37]  Andrew G. White,et al.  On the measurement of qubits , 2001, quant-ph/0103121.

[38]  Vlatko Vedral,et al.  Entanglement in Quantum Information Theory , 1998, quant-ph/9804075.

[39]  W. Wootters Entanglement of Formation of an Arbitrary State of Two Qubits , 1997, quant-ph/9709029.

[40]  M. Plenio,et al.  Quantifying Entanglement , 1997, quant-ph/9702027.

[41]  Shih,et al.  New high-intensity source of polarization-entangled photon pairs. , 1995, Physical review letters.

[42]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[43]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[44]  Werner,et al.  Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. , 1989, Physical review. A, General physics.

[45]  Hong,et al.  Measurement of subpicosecond time intervals between two photons by interference. , 1987, Physical review letters.

[46]  W. Wootters,et al.  A single quantum cannot be cloned , 1982, Nature.

[47]  E. Schrödinger Die gegenwärtige Situation in der Quantenmechanik , 1935, Naturwissenschaften.

[48]  Albert Einstein,et al.  Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .