Comparing Two Samples: Extensions of the t, Rank-Sum, and Log-Rank Tests

Abstract I consider the problem of testing that two populations are identical with respect to the distribution of a continuous variable against the alternative that values tend to be larger in one population. I observe that the t, rank-sum, and log-rank tests are insensitive for a large class of alternatives that may be expected to occur commonly in practice, propose a criterion for identifying this problem in a particular data set, and propose corresponding extensions of the conventional methods. The proposed methods should be useful for both identifying and interpreting group differences.

[1]  J. Daube,et al.  Plasma exchange in chronic inflammatory demyelinating polyradiculoneuropathy. , 1986, The New England journal of medicine.

[2]  D. Stablein,et al.  A two-sample test sensitive to crossing hazards in uncensored and singly censored data. , 1985, Biometrics.

[3]  P C O'Brien,et al.  Males exposed in utero to diethylstilbestrol. , 1984, JAMA.

[4]  Mark Brown,et al.  On the choice of variance for the log rank test , 1984 .

[5]  K. Behnen,et al.  A simple algorithm for the adaptation of scores and power behavior of the corresponding rank test , 1984 .

[6]  Bounds on efficiencies for some two-sample nonparametric statistics , 1984 .

[7]  Two Sample Rank Estimators of Optimal Nonparametric Score-Functions and Corresponding Adaptive Rank Statistics , 1983 .

[8]  Jerry Halpern,et al.  Maximally Selected Chi Square Statistics for Small Samples , 1982 .

[9]  Edward P. Markowski,et al.  Inference Based on Simple Rank Step Score Statistics for the Location Model , 1982 .

[10]  D. Siegmund,et al.  Maximally Selected Chi Square Statistics , 1982 .

[11]  D. Harrington A class of rank test procedures for censored survival data , 1982 .

[12]  W. J. R. Eplett Rank Tests Generated by Continuous Piecewise Linear Functions , 1982 .

[13]  P. Schein,et al.  A comparison of combination chemotherapy and combined modality therapy for locally advanced gastric carcinoma , 1982, Cancer.

[14]  R. Randles,et al.  Introduction to the Theory of Nonparametric Statistics , 1991 .

[15]  David P. Harrington,et al.  Modified Kolmogorov-Smirnov Test Procedures with Application to Arbitrarily Right-Censored Data , 1980 .

[16]  Douglas A. Wolfe,et al.  Introduction to the Theory of Nonparametric Statistics. , 1980 .

[17]  Terence J. O'Neill The General Distribution of the Error Rate of a Classification Procedure With Application to Logistic Regression Discrimination , 1980 .

[18]  R. Prentice,et al.  A qualitative discrepancy between censored data rank tests. , 1979, Biometrics.

[19]  S. J. Press,et al.  Choosing between Logistic Regression and Discriminant Analysis , 1978 .

[20]  R. Prentice Linear rank tests with right censored data , 1978 .

[21]  A. Ronald Gallant,et al.  Testing a Nonlinear Regression Specification: A Nonregular Case , 1977 .

[22]  H. Toutenburg,et al.  Lehmann, E. L., Nonparametrics: Statistical Methods Based on Ranks, San Francisco. Holden‐Day, Inc., 1975. 480 S., $ 22.95 . , 1977 .

[23]  E. Lehmann,et al.  Nonparametrics: Statistical Methods Based on Ranks , 1976 .

[24]  Rudolf Beran,et al.  Asymptotically Efficient Adaptive Rank Estimates in Location Models , 1974 .

[25]  J. Peto,et al.  Asymptotically Efficient Rank Invariant Test Procedures , 1972 .

[26]  D. Cox Regression Models and Life-Tables , 1972 .

[27]  David R. Cox,et al.  Regression models and life tables (with discussion , 1972 .

[28]  M. Halperin,et al.  Estimation of the multivariate logistic risk function: a comparison of the discriminant function and maximum likelihood approaches. , 1971, Journal of chronic diseases.

[29]  T. W. Anderson An Introduction to Multivariate Statistical Analysis , 1959 .

[30]  F. Ellis,et al.  A Possible Relationship between Psychological Factors and Human Cancer , 1954, Psychosomatic medicine.