An explicit density estimate for Dirichlet L-series
暂无分享,去创建一个
[1] ON ZEROS OF DIRICHLET'S L FUNCTIONS , 1986 .
[2] Tianze Wang,et al. On the Vinogradov bound in the three primes Goldbach conjecture , 2002 .
[3] M. Abramowitz,et al. Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .
[4] A. E. Ingham,et al. Theorems concerning Mean Values of Analytic Functions , 1927 .
[5] Pierre Dusart. Autour de la fonction qui compte le nombre de nombres premiers , 1998 .
[6] Hans Rademacher,et al. On the Phragmén-Lindelöf theorem and some applications , 1959 .
[7] Pierre Dusart,et al. Estimates of Some Functions Over Primes without R.H. , 2010, 1002.0442.
[8] O. Ramaré. Explicit estimates on the summatory functions of the Möbius function with coprimality restrictions , 2014 .
[9] Tim Trudgian,et al. An improved upper bound for the argument of the Riemann zeta-function on the critical line II , 2012 .
[10] Michael A. Bennett,et al. Rational Approximation to Algebraic Numbers of Small Height : the Diophantine Equation Jax N ? by N J = 1 , 2007 .
[11] H. Helfgott. Minor arcs for Goldbach's problem , 2012, 1205.5252.
[12] Lowell Schoenfeld,et al. Sharper bounds for the Chebyshev functions () and (). II , 1976 .
[13] Roland Bacher,et al. Determinants Related to Dirichlet Characters Modulo 2, 4 and 8 of binomial Coefficients and the Algebra of Recurrence Matrices , 2007, Int. J. Algebra Comput..
[14] Explicit upper bounds for the Stieltjes constants , 2013 .
[15] Xavier. The 10 13 first zeros of the Riemann Zeta function , and zeros computation at very large height , 2004 .
[16] J.-P. Gram,et al. Note sur les zéros de la fonction ζ(s) de Riemann , 1903 .
[17] D. Owen. Handbook of Mathematical Functions with Formulas , 1965 .
[18] J. Barkley Rosser,et al. Sharper bounds for the Chebyshev functions $\theta (x)$ and $\psi (x)$ , 1975 .
[19] Y. Cheng,et al. Explicit Estimates for the Riemann Zeta Function , 2004 .
[20] D. R. Heath-Brown,et al. The Theory of the Riemann Zeta-Function , 1987 .
[21] P. Gallagher,et al. A large sieve density estimate near σ=1 , 1970 .
[22] Lazhar Fekih-Ahmed,et al. On the zeros of the Riemann Zeta function , 2010, 1004.4143.
[23] I. S. Gradshteyn,et al. Table of Integrals, Series, and Products , 1976 .
[24] Robert Rumely,et al. Numerical computations concerning the ERH , 1993 .
[25] G. Ricotta. Real zeros and size of Rankin-Selberg $L$-functions in the level aspect , 2005, math/0502470.
[26] Calculation of Dirichlet L-Functions , 2010 .
[27] H. Kadiri. A zero density result for the Riemann zeta function , 2014, 1401.4781.
[28] I. M. Pyshik,et al. Table of integrals, series, and products , 1965 .
[29] S. Yakubovich,et al. Sharper estimates for Chebyshev's functions $\vartheta$ and $\psi$ , 2013, 1302.7208.
[30] T. Tatuzawa. On the Zeros of Dirichlet's L-Functions , 1950 .
[31] G. Bastien,et al. Convexité, complête monotonie et inégalités sur les fonctions zêta et gamma, sur les fonctions des opérateurs de Baskakov et sur des fonctions arithmétiques , 2002, Canadian Journal of Mathematics.
[32] H. Iwaniec,et al. Analytic Number Theory , 2004 .
[33] H. A. Helfgott,et al. Major arcs for Goldbach's theorem , 2013 .
[34] Olivier Ramaré,et al. On Šnirel'man's constant , 1995 .
[35] S. Yakubovich,et al. ANOTHER PROOF OF SPIRA'S INEQUALITY AND ITS APPLICATION TO THE RIEMANN HYPOTHESIS , 2013 .
[36] Andrew Granville,et al. Explicit bounds on exponential sums and the scarcity of squarefree binomial coefficients , 1996 .
[37] Milton Abramowitz,et al. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .
[38] Gerasimos Pergaris. On the Riemann Hypothesis , 2012, 1212.1413.
[39] Laura Faber,et al. New bounds for π(x) , 2013, Math. Comput..
[40] J. Barkley Rosser,et al. Sharper Bounds for the Chebyshev Functions θ(x) and ψ(x). II , 1975 .
[41] R. Spira. Calculation of Dirichlet -functions , 1969 .
[42] H. Montgomery,et al. Hilbert’s inequality , 1974 .
[43] David J. Platt,et al. Computing degree-1 L-functions rigorously , 2011 .
[44] L. Schoenfeld. An improved estimate for the summatory function of the Möbius function , 1969 .
[45] Terence Tao,et al. Every odd number greater than 1 is the sum of at most five primes , 2012, Math. Comput..
[46] E. royer,et al. Formes modulaires et périodes , 2005 .
[47] At least two fifths of the zeros of the Riemann zeta function are on the critical line , 1989 .
[48] Vincent Lefèvre,et al. MPFR: A multiple-precision binary floating-point library with correct rounding , 2007, TOMS.
[49] Cristian Dumitrescu,et al. The Riemann Hypothesis , 2013 .
[50] F. Bayart,et al. Composition operators on the Wiener-Dirichlet algebra , 2004, math/0410351.
[51] T. N. Q. Do,et al. Syntomic regulators and special values of p-adic L-functions , 1998 .
[52] The Bohr inequality for ordinary Dirichlet series , 2006 .
[53] Tianze Wang,et al. Distribution of zeros of Dirichlet L-functions and an explicit formula for ψ(t,χ) , 2002 .
[54] Enrico Bombieri,et al. Le grand crible dans la théorie analytique des nombres , 1987 .
[55] Kevin S. McCurley,et al. Explicit estimates for the error term in the prime number theorem for arithmetic progressions , 1984 .