An explicit density estimate for Dirichlet L-series

Dirichlet L-series L(s, χ) = ∑ n≥1 χ(n)n −s associated to primitive Dirichlet characters χ are one of the keys to the distribution of primes. Even the simple case χ = 1 which corresponds to the Riemann zeta-function contains many informations on primes and on the Farey dissection. There have been many generalizations of these notions, and they all have arithmetical properties and/or applications, see [45, 29, 33] for instance. Investigations concerning these functions range over many directions, see [14] or [43]. We note furthermore that Dirichlet characters have been the subject of numerous studies, see [2, 50, 4]; Dirichlet series in themselves are still mysterious, see [3] and [6]. One of the main problem concerns the location of the zeroes of these functions in the strip 0 < <s < 1; the Generalized Riemann Hypothesis asserts that all of those are on the line <s = 1/2. We concentrate in this paper on estimating

[1]  ON ZEROS OF DIRICHLET'S L FUNCTIONS , 1986 .

[2]  Tianze Wang,et al.  On the Vinogradov bound in the three primes Goldbach conjecture , 2002 .

[3]  M. Abramowitz,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[4]  A. E. Ingham,et al.  Theorems concerning Mean Values of Analytic Functions , 1927 .

[5]  Pierre Dusart Autour de la fonction qui compte le nombre de nombres premiers , 1998 .

[6]  Hans Rademacher,et al.  On the Phragmén-Lindelöf theorem and some applications , 1959 .

[7]  Pierre Dusart,et al.  Estimates of Some Functions Over Primes without R.H. , 2010, 1002.0442.

[8]  O. Ramaré Explicit estimates on the summatory functions of the Möbius function with coprimality restrictions , 2014 .

[9]  Tim Trudgian,et al.  An improved upper bound for the argument of the Riemann zeta-function on the critical line II , 2012 .

[10]  Michael A. Bennett,et al.  Rational Approximation to Algebraic Numbers of Small Height : the Diophantine Equation Jax N ? by N J = 1 , 2007 .

[11]  H. Helfgott Minor arcs for Goldbach's problem , 2012, 1205.5252.

[12]  Lowell Schoenfeld,et al.  Sharper bounds for the Chebyshev functions () and (). II , 1976 .

[13]  Roland Bacher,et al.  Determinants Related to Dirichlet Characters Modulo 2, 4 and 8 of binomial Coefficients and the Algebra of Recurrence Matrices , 2007, Int. J. Algebra Comput..

[14]  Explicit upper bounds for the Stieltjes constants , 2013 .

[15]  Xavier The 10 13 first zeros of the Riemann Zeta function , and zeros computation at very large height , 2004 .

[16]  J.-P. Gram,et al.  Note sur les zéros de la fonction ζ(s) de Riemann , 1903 .

[17]  D. Owen Handbook of Mathematical Functions with Formulas , 1965 .

[18]  J. Barkley Rosser,et al.  Sharper bounds for the Chebyshev functions $\theta (x)$ and $\psi (x)$ , 1975 .

[19]  Y. Cheng,et al.  Explicit Estimates for the Riemann Zeta Function , 2004 .

[20]  D. R. Heath-Brown,et al.  The Theory of the Riemann Zeta-Function , 1987 .

[21]  P. Gallagher,et al.  A large sieve density estimate near σ=1 , 1970 .

[22]  Lazhar Fekih-Ahmed,et al.  On the zeros of the Riemann Zeta function , 2010, 1004.4143.

[23]  I. S. Gradshteyn,et al.  Table of Integrals, Series, and Products , 1976 .

[24]  Robert Rumely,et al.  Numerical computations concerning the ERH , 1993 .

[25]  G. Ricotta Real zeros and size of Rankin-Selberg $L$-functions in the level aspect , 2005, math/0502470.

[26]  Calculation of Dirichlet L-Functions , 2010 .

[27]  H. Kadiri A zero density result for the Riemann zeta function , 2014, 1401.4781.

[28]  I. M. Pyshik,et al.  Table of integrals, series, and products , 1965 .

[29]  S. Yakubovich,et al.  Sharper estimates for Chebyshev's functions $\vartheta$ and $\psi$ , 2013, 1302.7208.

[30]  T. Tatuzawa On the Zeros of Dirichlet's L-Functions , 1950 .

[31]  G. Bastien,et al.  Convexité, complête monotonie et inégalités sur les fonctions zêta et gamma, sur les fonctions des opérateurs de Baskakov et sur des fonctions arithmétiques , 2002, Canadian Journal of Mathematics.

[32]  H. Iwaniec,et al.  Analytic Number Theory , 2004 .

[33]  H. A. Helfgott,et al.  Major arcs for Goldbach's theorem , 2013 .

[34]  Olivier Ramaré,et al.  On Šnirel'man's constant , 1995 .

[35]  S. Yakubovich,et al.  ANOTHER PROOF OF SPIRA'S INEQUALITY AND ITS APPLICATION TO THE RIEMANN HYPOTHESIS , 2013 .

[36]  Andrew Granville,et al.  Explicit bounds on exponential sums and the scarcity of squarefree binomial coefficients , 1996 .

[37]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[38]  Gerasimos Pergaris On the Riemann Hypothesis , 2012, 1212.1413.

[39]  Laura Faber,et al.  New bounds for π(x) , 2013, Math. Comput..

[40]  J. Barkley Rosser,et al.  Sharper Bounds for the Chebyshev Functions θ(x) and ψ(x). II , 1975 .

[41]  R. Spira Calculation of Dirichlet -functions , 1969 .

[42]  H. Montgomery,et al.  Hilbert’s inequality , 1974 .

[43]  David J. Platt,et al.  Computing degree-1 L-functions rigorously , 2011 .

[44]  L. Schoenfeld An improved estimate for the summatory function of the Möbius function , 1969 .

[45]  Terence Tao,et al.  Every odd number greater than 1 is the sum of at most five primes , 2012, Math. Comput..

[46]  E. royer,et al.  Formes modulaires et périodes , 2005 .

[47]  At least two fifths of the zeros of the Riemann zeta function are on the critical line , 1989 .

[48]  Vincent Lefèvre,et al.  MPFR: A multiple-precision binary floating-point library with correct rounding , 2007, TOMS.

[49]  Cristian Dumitrescu,et al.  The Riemann Hypothesis , 2013 .

[50]  F. Bayart,et al.  Composition operators on the Wiener-Dirichlet algebra , 2004, math/0410351.

[51]  T. N. Q. Do,et al.  Syntomic regulators and special values of p-adic L-functions , 1998 .

[52]  The Bohr inequality for ordinary Dirichlet series , 2006 .

[53]  Tianze Wang,et al.  Distribution of zeros of Dirichlet L-functions and an explicit formula for ψ(t,χ) , 2002 .

[54]  Enrico Bombieri,et al.  Le grand crible dans la théorie analytique des nombres , 1987 .

[55]  Kevin S. McCurley,et al.  Explicit estimates for the error term in the prime number theorem for arithmetic progressions , 1984 .