Unveiling the counter-rotating nature of the kinematically distinct core in NGC 5813 with MUSE

Multi-Unit Spectroscopic Explorer (MUSE) observations of NGC 5813 reveal a complex structure in the velocity dispersion map, previously hinted at by SAURON observations. The structure is reminiscent of velocity dispersion maps of galaxies comprising two counter-rotating discs, and might explain the existence of the kinematically distinct core (KDC). Further evidence for two counter-rotating components comes from the analysis of the higher moments of the stellar line-of-sight velocity distributions and fitting MUSE spectra with two separate Gaussian line-of-sight velocity distributions. The emission-line kinematics show evidence of being linked to the present cooling flows and the buoyant cavities seen in X-rays. We detect ionized gas in a nuclear disc-like structure, oriented like the KDC, which is, however, not directly related to the KDC. We build an axisymmetric Schwarzschild dynamical model, which shows that the MUSE kinematics can be reproduced well with two counter-rotating orbit families, characterized by relatively low angular momentum components, but clearly separated in integral phase space and with radially varying contributions. The model indicates that the counter-rotating components in NGC 5813 are not thin discs, but dynamically hot structures. Our findings give further evidence that KDCs in massive galaxies should not necessarily be considered as structurally or dynamically decoupled regions, but as the outcomes of the mixing of different orbital families, where the balance in the distribution of mass of the orbital families is crucial. We discuss the formation of the KDC in NGC 5813 within the framework of gas accretion, binary mergers and formation of turbulent thick discs from cold streams at high redshift.

[1]  T. Naab,et al.  Stellar orbits in cosmological galaxy simulations: the connection to formation history and line-of-sight kinematics , 2014, 1406.6696.

[2]  Institute for Advanced Study,et al.  Triaxial orbit based galaxy models with an application to the (apparent) decoupled core galaxy NGC 4365 , 2007, 0712.0113.

[3]  J. Ostriker,et al.  How do minor mergers promote inside-out growth of ellipticals, transforming the size, density profile and dark matter fraction? , 2012, 1206.5004.

[4]  H. Rix,et al.  NGC 4550 : a laboratory for testing galaxy formation , 1992 .

[5]  O. Ilbert,et al.  NEWLY QUENCHED GALAXIES AS THE CAUSE FOR THE APPARENT EVOLUTION IN AVERAGE SIZE OF THE POPULATION , 2013, 1302.5115.

[6]  Ortwin Gerhard,et al.  Line-of-sight velocity profiles in spherical galaxies: breaking the degeneracy between anisotropy and mass , 1993 .

[7]  L. Hernquist,et al.  ORBITAL STRUCTURE OF MERGER REMNANTS. I. EFFECT OF GAS FRACTION IN PURE DISK MERGERS , 2010, 1001.0799.

[8]  G. Ven,et al.  A NEW CHANNEL FOR THE FORMATION OF KINEMATICALLY DECOUPLED CORES IN EARLY-TYPE GALAXIES , 2015, 1502.00634.

[9]  Gerard A. Luppino,et al.  The SBF Survey of Galaxy Distances. IV. SBF Magnitudes, Colors, and Distances , 2000, astro-ph/0011223.

[10]  G. Efstathiou,et al.  Line-Strength Gradients in NGC 5813 , 1985 .

[11]  Michele Cappellari,et al.  Measuring the inclination and mass-to-light ratio of axisymmetric galaxies via anisotropic Jeans models of stellar kinematics , 2008, 0806.0042.

[12]  E. Emsellem,et al.  The SAURON project – X. The orbital anisotropy of elliptical and lenticular galaxies: revisiting the (V/σ, ɛ) diagram with integral‐field stellar kinematics , 2007, astro-ph/0703533.

[13]  R. Ellis,et al.  MOSFIRE ABSORPTION LINE SPECTROSCOPY OF z > 2 QUIESCENT GALAXIES: PROBING A PERIOD OF RAPID SIZE GROWTH , 2014, 1404.4872.

[14]  A. J. Cenarro,et al.  An updated MILES stellar library and stellar population models , 2011, 1107.2303.

[15]  R. Peletier,et al.  MILES: A Medium resolution INT Library of Empirical Spectra , 2006, astro-ph/0607009.

[16]  M. Rees,et al.  Massive black hole binaries in active galactic nuclei , 1980, Nature.

[17]  A. J. Richings,et al.  The connection between radio loudness and central surface brightness profiles in optically selected low-luminosity active galaxies , 2011, 1104.1053.

[18]  Charles L. Lawson,et al.  Solving least squares problems , 1976, Classics in applied mathematics.

[19]  J. Falc'on-Barroso,et al.  MIUSCAT: extended MILES spectral coverage – I. Stellar population synthesis models , 2012, 1205.5496.

[20]  K. Alatalo,et al.  Simulations of binary galaxy mergers and the link with fast rotators, slow rotators, and kinematically distinct cores , 2011, 1201.0885.

[21]  Carl J. Grillmair,et al.  The Centers of Early-Type Galaxies with HST.I.An Observational Survey , 1995 .

[22]  M. Cappellari,et al.  The SAURON project – XII. Kinematic substructures in early-type galaxies: evidence for discs in fast rotators , 2008, 0807.1505.

[23]  R. Bender,et al.  Line-of-sight velocity distributions of elliptical galaxies , 1994 .

[24]  A. Mahdavi The NGC 5846 Group: Dynamics and the Luminosity Function to MR = −12 , 2005, astro-ph/0506737.

[25]  B. T. Dullo,et al.  Depleted cores, multicomponent fits, and structural parameter relations for luminous early-type galaxies , 2013, 1310.5867.

[26]  P. Schechter,et al.  Evidence for dynamical subsystems in elliptical galaxies , 1988 .

[27]  The SAURON project – VII. Integral-field absorption and emission-line kinematics of 24 spiral galaxy bulges , 2006, astro-ph/0603161.

[28]  Jeremiah P. Ostriker,et al.  THE TWO PHASES OF GALAXY FORMATION , 2010, 1010.1381.

[29]  The SAURON project – VIII. OASIS/CFHT integral-field spectroscopy of elliptical and lenticular galaxy centres , 2006, astro-ph/0609452.

[30]  R. Rich,et al.  Nuclear Properties of Kinematically Distinct Cores , 1997 .

[31]  M. Cappellari,et al.  Disentangling the stellar populations in the counter-rotating disc galaxy NGC 4550 , 2012, 1210.0535.

[32]  J. Kormendy Recognizing merger remnants among normal elliptical galaxies : NGC 5813. , 1984 .

[33]  R. Bender,et al.  DEPLETED GALAXY CORES AND DYNAMICAL BLACK HOLE MASSES , 2013, 1310.5310.

[34]  P. Hopkins,et al.  Discriminating Between the Physical Processes that Drive Spheroid Size Evolution , 2009, 0909.2039.

[35]  D. Vergani,et al.  NGC 5719/13: interacting spirals forming a counter-rotating stellar disc. , 2006, astro-ph/0611426.

[36]  C. Carollo,et al.  Ellipticals with Kinematically Distinct Cores: V – I Color Images with WPFC2 , 1997, astro-ph/9701218.

[37]  G. Illingworth,et al.  ELLIPTICALS WITH KINEMATICALLY DISTINCT CORES - WFPC1 IMAGING OF NEARBY ELLIPTICALS , 1995 .

[38]  R. Cen,et al.  Building galaxies by accretion and in-situ star formation , 2012, 1206.0295.

[39]  P. T. de Zeeuw,et al.  Galaxy Mapping with the SAURON Integral-Field Spectrograph: The Star Formation History of NGC 4365 , 2000, astro-ph/0011254.

[40]  K. Alatalo,et al.  The ATLAS3D project - XVII. Linking photometric and kinematic signatures of stellar discs in early-type galaxies , 2012, 1210.8167.

[41]  J. Ostriker,et al.  FORMING EARLY-TYPE GALAXIES IN ΛCDM SIMULATIONS. I. ASSEMBLY HISTORIES , 2012, 1202.3441.

[42]  M. Schwarzschild,et al.  A numerical model for a triaxial stellar system in dynamical equilibrium , 1979 .

[43]  M. Franx,et al.  A new method for the identification of non-Gaussian line profiles in elliptical galaxies , 1993 .

[44]  R. Davies,et al.  The ATLAS3D project - XXV. Two-dimensional kinematic analysis of simulated galaxies and the cosmological origin of fast and slow rotators , 2013, 1311.0284.

[45]  T. Heckman,et al.  Major and minor axis kinematics of 22 ellipticals , 1989 .

[46]  J. Ostriker,et al.  MINOR MERGERS AND THE SIZE EVOLUTION OF ELLIPTICAL GALAXIES , 2009, 0903.1636.

[47]  R. Davies,et al.  The SAURON project – III. Integral-field absorption-line kinematics of 48 elliptical and lenticular galaxies , 2004 .

[48]  Harald Kuntschner,et al.  The SAURON project – IX. A kinematic classification for early‐type galaxies , 2007, astro-ph/0703531.

[49]  R. Davé,et al.  Galaxies in a simulated ΛCDM Universe – I. Cold mode and hot cores , 2008, 0809.1430.

[50]  Chung-Pei Ma,et al.  REVISITING THE SCALING RELATIONS OF BLACK HOLE MASSES AND HOST GALAXY PROPERTIES , 2012, 1211.2816.

[51]  Daniel Ceverino,et al.  FORMATION OF MASSIVE GALAXIES AT HIGH REDSHIFT: COLD STREAMS, CLUMPY DISKS, AND COMPACT SPHEROIDS , 2009, 0901.2458.

[52]  T. Zeeuw Elliptical galaxies with separable potentials , 1985 .

[53]  G. Efstathiou,et al.  Further observations of the elliptical galaxy NGC 5813 , 1982 .

[54]  J. Primack,et al.  Simulating multiple merger pathways to the central kinematics of early-type galaxies , 2014, 1407.4812.

[55]  G. Illingworth,et al.  The ordered nature of elliptical galaxies - Implications for their intrinsic angular momenta and shapes , 1991 .

[56]  A New Empirical Model for the Structural Analysis of Early-Type Galaxies, and A Critical Review of the Nuker Model* , 2003, astro-ph/0306023.

[57]  K. Alatalo,et al.  The ATLAS3D Project XXIII: angular momentum and nuclear surface brightness profiles , 2013, 1305.4973.

[58]  Roger L. Davies,et al.  Determination of masses of the central black holes in NGC 524 and 2549 using laser guide star adaptive optics , 2009, 0907.3748.

[59]  R. Feldmann,et al.  THE HUBBLE SEQUENCE IN GROUPS: THE BIRTH OF THE EARLY-TYPE GALAXIES , 2010, 1008.3386.

[60]  M. Donahue,et al.  SHOCKS AND CAVITIES FROM MULTIPLE OUTBURSTS IN THE GALAXY GROUP NGC 5813: A WINDOW TO ACTIVE GALACTIC NUCLEUS FEEDBACK , 2010, 1006.4379.

[61]  The SAURON project—V. Integral-field emission-line kinematics of 48 elliptical and lenticular galaxies , 2004, astro-ph/0404034.

[62]  A. Renzini,et al.  THE EVOLUTION OF THE NUMBER DENSITY OF COMPACT GALAXIES , 2013, 1309.2427.

[63]  Garching,et al.  Dating the formation of the counter‐rotating stellar disc in the spiral galaxy NGC 5719 by disentangling its stellar populations★ , 2011, 1101.3092.

[64]  G. Illingworth,et al.  A counterrotating core in IC 1459 , 1988 .

[65]  K. Alatalo,et al.  The ATLAS3D project - II. Morphologies, kinemetric features and alignment between photometric and kinematic axes of early-type galaxies , 2011, 1102.3801.

[66]  B. T. Dullo,et al.  SIZING UP PARTIALLY DEPLETED GALAXY CORES , 2012, 1206.3845.

[67]  The SLUGGS survey: outer triaxiality of the fast rotator elliptical NGC 4473 , 2013, 1308.3531.

[68]  K. Alatalo,et al.  The ATLAS3D Project – XXX. Star formation histories and stellar population scaling relations of early-type galaxies , 2015, 1501.03723.

[69]  M. Cappellari Efficient multi-Gaussian expansion of galaxies , 2002, astro-ph/0201430.

[70]  R. Davies,et al.  The ATLAS3D project – I. A volume-limited sample of 260 nearby early-type galaxies: science goals and selection criteria , 2010, 1012.1551.

[71]  R. Peletier,et al.  2D kinematics of simulated disc merger remnants , 2006, astro-ph/0606144.

[72]  Eric Emsellem,et al.  Parametric Recovery of Line‐of‐Sight Velocity Distributions from Absorption‐Line Spectra of Galaxies via Penalized Likelihood , 2003, astro-ph/0312201.

[73]  C. Carollo,et al.  Metallicity gradients in early-type galaxies , 1993 .

[74]  R. Davé,et al.  How do galaxies get their gas , 2002, astro-ph/0407095.

[75]  M. Steinmetz,et al.  Counterrotating stars in simulated galaxy discs , 2013, 1311.1215.

[76]  K. Alatalo,et al.  The ATLAS3D project – XX. Mass–size and mass–σ distributions of early-type galaxies: bulge fraction drives kinematics, mass-to-light ratio, molecular gas fraction and stellar initial mass function , 2012, 1208.3523.

[77]  V. Rubin,et al.  Cospatial Counterrotating Stellar Disks in the Virgo E7/S0 Galaxy NGC 4550 , 1992 .

[78]  C. Carollo,et al.  Dynamics and stellar populations in early-type galaxies , 1994 .

[79]  G. Efstathiou,et al.  Line-strengths in early-type galaxies , 1990, Monthly Notices of the Royal Astronomical Society.

[80]  A. J. Cenarro,et al.  Medium-resolution isaac newton telescope library of empirical spectra , 2006 .

[81]  G. Efstathiou,et al.  Formation of Early-Type Galaxies from Cosmological Initial Conditions , 2005, astro-ph/0512235.

[82]  A. Edge,et al.  The origin of cold gas in giant elliptical galaxies and its role in fuelling radio-mode AGN feedback , 2013, 1310.5450.

[83]  M. Cappellari,et al.  The Counterrotating Core and the Black Hole Mass of IC 1459 , 2002, astro-ph/0202155.

[84]  S. M. Fall,et al.  The kinematic properties of faint elliptical galaxies. , 1983 .

[85]  Timothy A. Davis,et al.  The ATLAS3D project XV: benchmark for early-type galaxies scaling relations from 260 dynamical models: mass-to-light ratio, dark matter, fundamental plane and mass plane , 2012, 1208.3522.

[86]  E. Emsellem,et al.  The SAURON project — II. Sample and early results , 2002 .

[87]  Harald Kuntschner,et al.  The SAURON project – XVII. Stellar population analysis of the absorption line strength maps of 48 early-type galaxies , 2010, 1006.1574.

[88]  Martin Schwarzschild,et al.  Triaxial equilibrium models for elliptical galaxies with slow figure rotation , 1982 .

[89]  Relation between dust and radio luminosity in optically selected early type galaxies , 2002, astro-ph/0205226.

[90]  Timothy A. Davis,et al.  The ATLAS3D project – III. A census of the stellar angular momentum within the effective radius of early‐type galaxies: unveiling the distribution of fast and slow rotators , 2011, 1102.4444.

[91]  Michael J. Williams,et al.  Regrowth of stellar disks in mature galaxies: The two component nature of NGC 7217 revisited with VIRUS-W†⋄ , 2014, Proceedings of the International Astronomical Union.

[92]  Italy.,et al.  Spectroscopic evidence of distinct stellar populations in the counter-rotating stellar disks of NGC 3593 and NGC 4550 , 2012, 1210.7807.

[93]  R. Davies,et al.  The SAURON project - IV. The mass-to-light ratio, the virial mass estimator and the Fundamental Plane of elliptical and lenticular galaxies , 2005, astro-ph/0505042.

[94]  E. Greisen,et al.  The NRAO VLA Sky Survey , 1996 .

[95]  G. Efstathiou,et al.  Spectroscopic observations of three elliptical galaxies , 1980 .

[96]  M. Milosavljevic,et al.  Formation of Galactic Nuclei , 2001, astro-ph/0103350.

[97]  Michele Cappellari,et al.  Adaptive spatial binning of integral-field spectroscopic data using Voronoi tessellations , 2003, astro-ph/0302262.

[98]  P. S. Bunclark,et al.  Astronomical Data Analysis Software and Systems , 2008 .