Inundation Extent Mapping by Synthetic Aperture Radar: A Review

Recent flood events have demonstrated a demand for satellite-based inundation mapping in near real-time (NRT). Simulating and forecasting flood extent is essential for risk mitigation. While numerical models are designed to provide such information, they usually lack reference at fine spatiotemporal resolution. Remote sensing techniques are expected to fill this void. Unlike optical sensors, synthetic aperture radar (SAR) provides valid measurements through cloud cover with high resolution and increasing sampling frequency from multiple missions. This study reviews theories and algorithms of flood inundation mapping using SAR data, together with a discussion of their strengths and limitations, focusing on the level of automation, robustness, and accuracy. We find that the automation and robustness of non-obstructed inundation mapping have been achieved in this era of big earth observation (EO) data with acceptable accuracy. They are not yet satisfactory, however, for the detection of beneath-vegetation flood mapping using L-band or multi-polarized (dual or fully) SAR data or for urban flood detection using fine-resolution SAR and ancillary building and topographic data.

[1]  F. Aires,et al.  Global inundation dynamics inferred from multiple satellite observations, 1993–2000 , 2007 .

[2]  S. Kanae,et al.  A physically based description of floodplain inundation dynamics in a global river routing model , 2011 .

[3]  Paul D. Bates,et al.  Near Real-Time Flood Detection in Urban and Rural Areas Using High-Resolution Synthetic Aperture Radar Images , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[4]  Richard K. Moore,et al.  Microwave Remote Sensing, Active and Passive , 1982 .

[5]  Yuichi Maruyama,et al.  Visualization of Flood Monitoring in the Lower Reaches of the Mekong River , 2001 .

[6]  M. Baatz,et al.  Object-oriented and Multi-scale Image Analysis in Semantic Networks Introduction: the Necessity for Integration of Remote Sensing and Gis , 2022 .

[7]  R. Heremans,et al.  Automatic detection of flooded areas on ENVISAT/ASAR images using an object-oriented classification technique and an active contour algorithm , 2003, International Conference on Recent Advances in Space Technologies, 2003. RAST '03. Proceedings of.

[8]  Venkatesh Merwade,et al.  An Integrated Approach for Flood Inundation Modeling on Large Scales , 2018 .

[9]  D. Mason,et al.  Flood boundary delineation from Synthetic Aperture Radar imagery using a statistical active contour model , 2001 .

[10]  Josef Kittler,et al.  Minimum error thresholding , 1986, Pattern Recognit..

[11]  Yeong-Sun Song,et al.  Efficient water area classification using radarsat-1 SAR imagery in a high relief mountainous environment , 2007 .

[12]  Mirela G. Tulbure,et al.  Modeling multidecadal surface water inundation dynamics and key drivers on large river basin scale using multiple time series of Earth‐observation and river flow data , 2017 .

[13]  Nazzareno Pierdicca,et al.  An algorithm for operational flood mapping from Synthetic Aperture Radar (SAR) data using fuzzy logic , 2011 .

[14]  John Jones The U.S. Geological Survey Dynamic Surface Water Extent product evaluation strategy , 2016 .

[15]  Marco Chini,et al.  A Hierarchical Split-Based Approach for Parametric Thresholding of SAR Images: Flood Inundation as a Test Case , 2017, IEEE Transactions on Geoscience and Remote Sensing.

[16]  T. Grout,et al.  A Backscattering Enhanced Microwave Canopy Scattering Model Based On MIMICS , 2010 .

[17]  Sandro Martinis,et al.  A fully automated TerraSAR-X based flood service , 2015 .

[18]  P. Bates,et al.  Evaluation of 1D and 2D numerical models for predicting river flood inundation , 2002 .

[19]  Nataliia Kussul,et al.  Grid system for flood extent extraction from satellite images , 2008, Earth Sci. Informatics.

[20]  Saibun Tjuatja,et al.  Numerical simulation of scattering from three-dimensional randomly rough surfaces , 1994, IEEE Trans. Geosci. Remote. Sens..

[21]  Andrew J. Blanchard,et al.  DETECTION OF LOWLAND FLOODING USING ACTIVE MICROWAVE SYSTEMS. , 1985 .

[22]  A Oy,et al.  Synthetic Aperture Radar Calibration Using Reference Reflectors , 1990 .

[23]  Nazzareno Pierdicca,et al.  Monitoring Flood Evolution in Vegetated Areas Using COSMO-SkyMed Data: The Tuscany 2009 Case Study , 2013, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[24]  Yutaka Ichikawa,et al.  Estimation of inundation depth using flood extent information and hydrodynamic simulations , 2016 .

[25]  Emmanouil N. Anagnostou,et al.  GDBC: A tool for generating global-scale distributed basin morphometry , 2016, Environ. Model. Softw..

[26]  Chiara Biscarini,et al.  COMPARING A LARGE‐SCALE DEM‐BASED FLOODPLAIN DELINEATION ALGORITHM WITH STANDARD FLOOD MAPS: THE TIBER RIVER BASIN CASE STUDY , 2013 .

[27]  Emmanouil N. Anagnostou,et al.  An Advanced Distributed Hydrologic Framework: The Development of CREST , 2016 .

[28]  Hiroyoshi Yamada,et al.  Four-component scattering model for polarimetric SAR image decomposition , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[29]  Lorenzo Bruzzone,et al.  An unsupervised approach based on the generalized Gaussian model to automatic change detection in multitemporal SAR images , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[30]  Dai Yamazaki,et al.  Development of the Global Width Database for Large Rivers , 2014 .

[31]  Xinyi Shen,et al.  A Numerical Framework for Evaluating Flood Inundation Risk under Different Dam Operation Scenarios , 2018 .

[32]  John W. Jones,et al.  Efficient Wetland Surface Water Detection and Monitoring via Landsat: Comparison within situ Data from the Everglades Depth Estimation Network , 2015, Remote. Sens..

[33]  Yang Hong,et al.  Refining a Distributed Linear Reservoir Routing Method to Improve Performance of the CREST Model , 2017 .

[34]  Alberto Refice,et al.  SAR and InSAR for Flood Monitoring: Examples With COSMO-SkyMed Data , 2014, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[35]  Francesca Bovolo,et al.  A Split-Based Approach to Unsupervised Change Detection in Large-Size Multitemporal Images: Application to Tsunami-Damage Assessment , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[36]  Paul D. Bates,et al.  Waterline mapping in flooded vegetation from airborne SAR imagery , 2003 .

[37]  Aleksandra Pizurica,et al.  Supervised feature-based classification of multi-channel SAR images , 2006, Pattern Recognit. Lett..

[38]  Patrick Matgen,et al.  Towards an automated SAR-based flood monitoring system: Lessons learned from two case studies , 2011 .

[39]  Giorgio Boni,et al.  Use of SAR Data for Detecting Floodwater in Urban and Agricultural Areas: The Role of the Interferometric Coherence , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[40]  Lawrence W. Martz,et al.  A multi‐sensor approach to wetland flood monitoring , 2002 .

[41]  Leila Guerriero,et al.  A fully polarimetric multiple scattering model for crops , 1995 .

[42]  William J. Carswell,et al.  The National Map - Hydrography , 2009 .

[43]  Efi Foufoula-Georgiou,et al.  Floodplain morphometry extraction from a high-resolution digital elevation model: a simple algorithm for regional analysis studies , 2006, IEEE Geoscience and Remote Sensing Letters.

[44]  Simon Plank,et al.  Sentinel-1-based flood mapping: a fully automated processing chain , 2016 .

[45]  Chenghu Zhou,et al.  Flood monitoring using multi-temporal AVHRR and RADARSAT imagery , 2000 .

[46]  Philip A. Townsend,et al.  Mapping Seasonal Flooding in Forested Wetlands Using Multi-Temporal Radarsat SAR , 2001 .

[47]  Nazzareno Pierdicca,et al.  SAR coherence and polarimetric information for improving flood mapping , 2016, 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[48]  Dmitri Kavetski,et al.  Probabilistic Flood Mapping Using Synthetic Aperture Radar Data , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[49]  J. Pekel,et al.  High-resolution mapping of global surface water and its long-term changes , 2016, Nature.

[50]  Paul D. Bates,et al.  Flood Detection in Urban Areas Using TerraSAR-X , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[51]  Nazzareno Pierdicca,et al.  Flood monitoring using multi-temporal COSMO-SkyMed data: Image segmentation and signature interpretation , 2011 .

[52]  Efi Foufoula-Georgiou,et al.  A multi-sensor data-driven methodology for all-sky passive microwave inundation retrieval , 2016, 1807.03803.

[53]  V. Merwade,et al.  Investigating the role of model structure and surface roughness in generating flood inundation extents using one‐ and two‐dimensional hydraulic models , 2019 .

[54]  Nazzareno Pierdicca,et al.  Sentinel-1 InSAR Coherence to Detect Floodwater in Urban Areas: Houston and Hurricane Harvey as A Test Case , 2019, Remote. Sens..

[55]  Urs Wegmüller,et al.  Multi-temporal SAR metrics applied to map water bodies , 2012, 2012 IEEE International Geoscience and Remote Sensing Symposium.

[56]  Matthew S. Horritt,et al.  A statistical active contour model for SAR image segmentation , 1999, Image Vis. Comput..

[57]  Emmanouil N. Anagnostou,et al.  A Comprehensive Database of Flood Events in the Contiguous United States from 2002 to 2013 , 2017 .

[58]  Carlos López-Martínez,et al.  Towards a 20 m Global Building Map from Sentinel-1 SAR Data , 2018, Remote. Sens..

[59]  Niko E. C. Verhoest,et al.  Flood Mapping Based on Synthetic Aperture Radar: An Assessment of Established Approaches , 2019, IEEE Transactions on Geoscience and Remote Sensing.

[60]  Sandro Martinis,et al.  Backscatter Analysis Using Multi-Temporal and Multi-Frequency SAR Data in the Context of Flood Mapping at River Saale, Germany , 2015, Remote. Sens..

[61]  Christopher A. Barnes,et al.  Completion of the 2006 National Land Cover Database for the conterminous United States. , 2011 .

[62]  Kris A. Johnson,et al.  Estimates of present and future flood risk in the conterminous United States , 2017 .

[63]  Emmanouil N. Anagnostou,et al.  A Framework to Improve Hyper-resolution Hydrological Simulation in Snow-Affected Regions , 2017 .

[64]  E. Pottier,et al.  Polarimetric Radar Imaging: From Basics to Applications , 2009 .

[65]  Hankui K. Zhang,et al.  Finer resolution observation and monitoring of global land cover: first mapping results with Landsat TM and ETM+ data , 2013 .

[66]  Fabio Cian,et al.  Flood depth estimation by means of high-resolution SAR images and lidar data , 2018, Natural Hazards and Earth System Sciences.

[67]  Luis Gómez,et al.  Statistical Properties of an Unassisted Image Quality Index for SAR Imagery , 2019, Remote. Sens..

[68]  F. Aires,et al.  Interannual variability of surface water extent at the global scale, 1993–2004 , 2010 .

[69]  Yang Hong,et al.  A global distributed basin morphometric dataset , 2017, Scientific Data.

[70]  Paul D. Bates,et al.  A Change Detection Approach to Flood Mapping in Urban Areas Using TerraSAR-X , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[71]  Mohammad Adnan Rajib,et al.  Comparison of new generation low-complexity flood inundation mapping tools with a hydrodynamic model , 2018 .

[72]  Sagy Cohen,et al.  Estimating Floodwater Depths from Flood Inundation Maps and Topography , 2018, Asia-Pacific Remote Sensing.

[73]  Stephen L. Durden,et al.  A three-component scattering model for polarimetric SAR data , 1998, IEEE Trans. Geosci. Remote. Sens..

[74]  M. Marconcini,et al.  Normalized Difference Flood Index for rapid flood mapping: Taking advantage of EO big data , 2018 .

[75]  Lorenzo Bruzzone,et al.  On the Relationship Between Double Bounce and the Orientation of Buildings in VHR SAR Images , 2011, IEEE Geoscience and Remote Sensing Letters.

[76]  Albert J. Kettner,et al.  Near-real-time non-obstructed flood inundation mapping using synthetic aperture radar , 2019, Remote Sensing of Environment.

[77]  Filipe Aires,et al.  Characterization and Space-Time Downscaling of the Inundation Extent over the Inner Niger Delta Using GIEMS and MODIS Data , 2014 .

[78]  Boli Xiong,et al.  Automated flood detection with improved robustness and efficiency using multi-temporal SAR data , 2014 .

[79]  Y. Yamada,et al.  Detection of flood-inundated area and relation between the area and micro-geomorphology using SAR and GIS , 2001, IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217).

[80]  A. Fung Microwave Scattering and Emission Models and their Applications , 1994 .

[81]  John W. Jones,et al.  Improved Automated Detection of Subpixel-Scale Inundation - Revised Dynamic Surface Water Extent (DSWE) Partial Surface Water Tests , 2019, Remote. Sens..

[82]  Nazzareno Pierdicca,et al.  Analysis of Cosmo-SkyMed observations of the 2008 flood in Myanmar , 2010 .

[83]  T. Pavelsky,et al.  Global extent of rivers and streams , 2018, Science.

[84]  Sandro Martinis,et al.  Towards operational near real-time flood detection using a split-based automatic thresholding procedure on high resolution TerraSAR-X data , 2009 .

[85]  Emmanouil N. Anagnostou,et al.  A Numerical Framework for Evaluating Flood Inundation Hazard under Different Dam Operation Scenarios—A Case Study in Naugatuck River , 2018, Water.

[86]  David C. Mason,et al.  etection of flooded urban areas in high resolution Synthetic perture Radar images using double scattering , 2013 .

[87]  Tan Qu-lin Measuring Lake Water Level Using Multi-Source Remote Sensing Images Combined with Hydrological Statistical Data , 2006 .

[88]  S. Kanae,et al.  A high‐accuracy map of global terrain elevations , 2017 .

[89]  G. Schumann,et al.  Microwave remote sensing of flood inundation , 2015 .