TOWARD PRECISION SUPERMASSIVE BLACK HOLE MASSES USING MEGAMASER DISKS

Megamaser disks provide the most precise and accurate extragalactic supermassive black hole masses. Here we describe a search for megamasers in nearby galaxies using the Green Bank Telescope (GBT). We focus on galaxies where we believe that we can resolve the gravitational sphere of influence of the black hole and derive a stellar or gas dynamical measurement with optical or NIR observations. Since there are only a handful of super massive black holes (SMBH) that have direct black hole mass measurements from more than one method, even a single galaxy with a megamaser disk and a stellar dynamical black hole mass would provide necessary checks on the stellar dynamical methods. We targeted 87 objects from the Hobby-Eberly Telescope Massive Galaxy Survey, and detected no new maser disks. Most of the targeted objects are elliptical galaxies with typical stellar velocity dispersions of 250 km/s and distances within 130 Mpc. We discuss the implications of our non-detections, whether they imply a threshold X-ray luminosity required for masing, or possibly reflect the difficulty of maintaining a masing disk around much more massive (>10^8 Msun) black holes at low Eddington ratio. Given the power of maser disks at probing black hole accretion and demographics, we suggest that future maser searches should endeavour to remove remaining sample biases, in order to sort out the importance of these covariant effects.

[1]  K. Lo MEGA-MASERS AND GALAXIES , 2005 .

[2]  University of California,et al.  A STELLAR DYNAMICAL MASS MEASUREMENT OF THE BLACK HOLE IN NGC 3998 FROM KECK ADAPTIVE OPTICS OBSERVATIONS , 2012, 1205.0816.

[3]  Linking the Supermassive Black Hole Growth with the Megamaser Emission , 2012, 1201.3925.

[4]  D. Neufeld,et al.  Water maser emission from X-ray-heated circumnuclear gas in active galaxies , 1994 .

[5]  Canada.,et al.  On the correlations between galaxy properties and supermassive black hole mass , 2011, 1109.6265.

[6]  C. Henkel,et al.  The discovery of five new H2O megamasers in active galaxies , 1994 .

[7]  T. A. Matthews,et al.  A Discussion of Galaxies Indentified with Radio Sources. , 1964 .

[8]  Johns Hopkins University,et al.  Candidate Type II Quasars from the Sloan Digital Sky Survey. I. Selection and Optical Properties of a Sample at 0.3 < Z < 0.83 , 2003, astro-ph/0309551.

[9]  M. Blanton,et al.  Physical properties and environments of nearby galaxies , 2009, 0908.3017.

[10]  The black hole in NGC 3379: a comparison of gas and stellar dynamical mass measurements with HST and integral‐field data★ , 2006, astro-ph/0605479.

[11]  Naomasa Nakai,et al.  Evidence for a black hole from high rotation velocities in a sub-parsec region of NGC4258 , 1995, Nature.

[12]  S. Tremaine,et al.  OBSERVATIONAL SELECTION EFFECTS AND THE M–σ RELATION , 2011, 1106.1079.

[13]  M. Reid,et al.  THE MEGAMASER COSMOLOGY PROJECT. V. AN ANGULAR-DIAMETER DISTANCE TO NGC 6264 AT 140 Mpc , 2012, 1207.7273.

[14]  Jiangshui Zhang,et al.  Radio properties of H2O maser host galaxies , 2012, 1201.2075.

[15]  Ž. Ivezić,et al.  The host galaxies of radio-loud active galactic nuclei: mass dependences, gas cooling and active galactic nuclei feedback , 2005 .

[16]  L. Shao,et al.  The nature of obscuration in AGN – I. Insights from host galaxies , 2013, 1304.7175.

[17]  Carnegie-Mellon,et al.  The Evolution of the M-sigma Relation , 2005, astro-ph/0506038.

[18]  J. Moran,et al.  Discovery of Water Maser Emission in Five AGNs and a Possible Correlation Between Water Maser and Nuclear 2-10 keV Luminosities , 2006, astro-ph/0610060.

[19]  L. Kewley,et al.  The host galaxies and classification of active galactic nuclei , 2006, astro-ph/0605681.

[20]  Mark J. Reid,et al.  The megamaser cosmology project. I. very long baseline interferometric observations of UGC 3789 , 2009 .

[21]  Ralf Bender,et al.  THE ASTROPHYSICAL JOURNAL Preprint typeset using L ATEX style emulateapj v. 10/09/06 THE M–σ AND M–L RELATIONS IN GALACTIC BULGES, AND DETERMINATIONS OF THEIR INTRINSIC SCATTER , 2008 .

[22]  Axisymmetric Dynamical Models of the Central Regions of Galaxies , 2002, astro-ph/0209483.

[23]  M. Cappellari,et al.  The benchmark black hole in NGC 4258: dynamical models from high-resolution two-dimensional stellar kinematics , 2015, 1503.04540.

[24]  Lincoln Greenhill,et al.  TOWARD A NEW GEOMETRIC DISTANCE TO THE ACTIVE GALAXY NGC 4258. III. FINAL RESULTS AND THE HUBBLE CONSTANT , 2013, 1307.6031.

[25]  E. Greisen,et al.  The NRAO VLA Sky Survey , 1996 .

[26]  A. Fabian,et al.  Piecing together the X-ray background : bolometric corrections for active galactic nuclei , 2007, 0708.4308.

[27]  Q. Guo,et al.  ON THE NUCLEAR OBSCURATION OF H2O MASER GALAXIES , 2009, 0912.2159.

[28]  B. Peterson,et al.  THE BLACK HOLE MASS OF NGC 4151. II. STELLAR DYNAMICAL MEASUREMENT FROM NEAR-INFRARED INTEGRAL FIELD SPECTROSCOPY , 2014, 1406.6735.

[29]  T. Davis A figure of merit for black hole mass measurements with molecular gas , 2014, 1406.2555.

[30]  R. Davies,et al.  The central kinematics of NGC 1399 measured with 14 pc resolution , 2005, astro-ph/0510278.

[31]  K. Jahnke,et al.  THE NON-CAUSAL ORIGIN OF THE BLACK-HOLE–GALAXY SCALING RELATIONS , 2010, 1006.0482.

[32]  L. Ho,et al.  Nuclear Luminosities and Radio Loudness of Seyfert Nuclei , 2001, astro-ph/0102502.

[33]  The Mass Function of Active Black Holes in the Local Universe , 2007 .

[34]  A Search for “Dwarf” Seyfert Nuclei. IV. Nuclei with Broad Hα Emission , 1997, astro-ph/9704099.

[35]  A. Toomre,et al.  On the gravitational stability of a disk of stars , 1964 .

[36]  V. Narayanan,et al.  Spectroscopic Target Selection in the Sloan Digital Sky Survey: The Main Galaxy Sample , 2002, astro-ph/0206225.

[37]  T. Heckman,et al.  Emission-line profiles and kinematics of the narrow-line region in Seyfert and radio galaxies , 1981 .

[38]  Chung-Pei Ma,et al.  REVISITING THE SCALING RELATIONS OF BLACK HOLE MASSES AND HOST GALAXY PROPERTIES , 2012, 1211.2816.

[39]  Donald E. Osterbrock,et al.  Spectral Classification of Emission-Line Galaxies , 1987 .

[40]  J. Greene,et al.  DWARF GALAXIES WITH OPTICAL SIGNATURES OF ACTIVE MASSIVE BLACK HOLES , 2013, 1308.0328.

[41]  J. Greene,et al.  REFINING THE MBH–Vc SCALING RELATION WITH H i ROTATION CURVES OF WATER MEGAMASER GALAXIES , 2013, 1309.5166.

[42]  L. Ho Nuclear Activity in Nearby Galaxies , 2008, 0803.2268.

[43]  K. Alatalo,et al.  The ATLAS3D Project – XXVIII. Dynamically driven star formation suppression in early-type galaxies , 2014, 1403.4850.

[44]  E. al.,et al.  The Sloan Digital Sky Survey: Technical summary , 2000, astro-ph/0006396.

[45]  J. M. Moran,et al.  Accelerations of Water Masers in NGC 4258 , 2000, astro-ph/0001543.

[46]  J. Moran,et al.  Evidence for a Geometrically Thick Self-Gravitating Accretion Disk in NGC 3079 , 2004, astro-ph/0408549.

[47]  J. M. Moran,et al.  The Geometry of and Mass Accretion Rate through the Maser Accretion Disk in NGC 4258 , 2005 .

[48]  K. Y. Lo,et al.  THE MEGAMASER COSMOLOGY PROJECT. II. THE ANGULAR-DIAMETER DISTANCE TO UGC 3789 , 2010, 1005.1955.

[49]  Naoki Yasuda,et al.  A Catalog of Morphologically Classified Galaxies from the Sloan Digital Sky Survey: North Equatorial Region , 2007, 0704.1743.

[50]  M. Reid,et al.  The Megamaser Cosmology Project: I. VLBI observations of UGC 3789 , 2008, 0811.4345.

[51]  K. Menten,et al.  Discovery of a luminous water megamaser in the FR II radiogalaxy 3C 403 , 2003, astro-ph/0307068.

[52]  F. Walter,et al.  DISCOVERY OF NUCLEAR WATER MASER EMISSION IN CENTAURUS A , 2013, 1305.6662.

[53]  S. Tremaine,et al.  The Black Hole Mass and Extreme Orbital Structure in NGC 1399 , 2007, 0709.0585.

[54]  The innermost region of the water megamaser radio galaxy 3C 403 , 2007, 0709.3417.

[55]  S. Tremaine,et al.  A STELLAR DYNAMICAL MEASUREMENT OF THE BLACK HOLE MASS IN THE MASER GALAXY NGC 4258 , 2008, 0808.4001.

[56]  J. Moran,et al.  DISCOVERY OF CANDIDATE H2O DISK MASERS IN ACTIVE GALACTIC NUCLEI AND ESTIMATIONS OF CENTRIPETAL ACCELERATIONS , 2009, 0911.0382.

[57]  M. Wardle,et al.  A SCALING RELATION BETWEEN MEGAMASER DISK RADIUS AND BLACK HOLE MASS IN ACTIVE GALACTIC NUCLEI , 2011, 1108.2175.

[58]  J. Brinchmann,et al.  Present-Day Growth of Black Holes and Bulges: The Sloan Digital Sky Survey Perspective , 2004, astro-ph/0406218.

[59]  STAR FORMATION IN GALAXIES ALONG THE HUBBLE SEQUENCE , 1998, astro-ph/9807187.

[60]  M. Reid,et al.  THE MEGAMASER COSMOLOGY PROJECT. III. ACCURATE MASSES OF SEVEN SUPERMASSIVE BLACK HOLES IN ACTIVE GALAXIES WITH CIRCUMNUCLEAR MEGAMASER DISKS , 2010, 1008.2146.

[61]  The Megamaser Cosmology Project. VI. Observations of NGC 6323 , 2014, 1411.5106.

[62]  M. Volonteri,et al.  RELATIONS BETWEEN CENTRAL BLACK HOLE MASS AND TOTAL GALAXY STELLAR MASS IN THE LOCAL UNIVERSE , 2015, 1508.06274.

[63]  M. Reid,et al.  THE MEGAMASER COSMOLOGY PROJECT. IV. A DIRECT MEASUREMENT OF THE HUBBLE CONSTANT FROM UGC 3789 , 2012, 1207.7292.

[64]  P. Prugniel,et al.  Hyperleda. I. Identification and designation of galaxies , 2003 .

[65]  D. Heeschen,et al.  Radio-continuum sources in nearby and bright E/S0 galaxies: active nuclei versus star formation , 1991 .

[66]  U. Austin,et al.  HUNTING FOR SUPERMASSIVE BLACK HOLES IN NEARBY GALAXIES WITH THE HOBBY–EBERLY TELESCOPE , 2015, 1502.00632.

[67]  E. Sadler,et al.  Low-luminosity radio sources in early-type galaxies , 1989 .

[68]  J. Baldwin,et al.  ERRATUM - CLASSIFICATION PARAMETERS FOR THE EMISSION-LINE SPECTRA OF EXTRAGALACTIC OBJECTS , 1981 .

[69]  C. Peng,et al.  PRECISE BLACK HOLE MASSES FROM MEGAMASER DISKS: BLACK HOLE–BULGE RELATIONS AT LOW MASS , 2010, 1007.2851.

[70]  University of California,et al.  THE M87 BLACK HOLE MASS FROM GAS-DYNAMICAL MODELS OF SPACE TELESCOPE IMAGING SPECTROGRAPH OBSERVATIONS , 2013, 1304.7273.

[71]  Alexei V. Filippenko,et al.  A Search for “Dwarf'' Seyfert Nuclei. III. Spectroscopic Parameters and Properties of the Host Galaxies , 1997, astro-ph/9704107.

[72]  D. Batcheldor THE M •-σ* RELATION DERIVED FROM SPHERE OF INFLUENCE ARGUMENTS , 2010, 1002.1705.

[73]  G. Zhu,et al.  OPTICAL PROPERTIES OF HOST GALAXIES OF EXTRAGALACTIC NUCLEAR WATER MASERS , 2011, 1108.3348.

[74]  T. Wiklind,et al.  Molecular gas and dust in NGC 4550 - A galaxy with two counterrotating stellar disks , 2001, astro-ph/0106286.

[75]  L. Ho,et al.  Coevolution (Or Not) of Supermassive Black Holes and Host Galaxies: Supplemental Material , 2013, 1304.7762.

[76]  R. Mandelbaum,et al.  Halo masses for optically selected and for radio-loud AGN from clustering and galaxy-galaxy lensing , 2008, 0806.4089.

[77]  Anna M. Moore,et al.  PROSPECTS FOR MEASURING SUPERMASSIVE BLACK HOLE MASSES WITH FUTURE EXTREMELY LARGE TELESCOPES , 2014, 1401.7988.

[78]  J. Lovell,et al.  Discovery of Water Maser Emission in Eight AGNs with 70 m Antennas of NASA’s Deep Space Network , 2005, astro-ph/0510851.

[79]  P. Martini,et al.  THE ORIGIN OF DUST IN EARLY-TYPE GALAXIES AND IMPLICATIONS FOR ACCRETION ONTO SUPERMASSIVE BLACK HOLES , 2013, 1302.5124.

[80]  M. Franx,et al.  DUST IN THE CORES OF EARLY-TYPE GALAXIES , 1995, astro-ph/9507101.

[81]  C. Henkel,et al.  A Survey for H2O Megamasers in Active Galactic Nuclei. II. A Comparison of Detected and Undetected Galaxies , 1997, astro-ph/9706221.

[82]  M. Reid,et al.  THE MEGAMASER COSMOLOGY PROJECT. VII. INVESTIGATING DISK PHYSICS USING SPECTRAL MONITORING OBSERVATIONS , 2015, 1507.07904.

[83]  S. Leiden,et al.  Estimating black hole masses in triaxial galaxies , 2009, 0910.0844.

[84]  Duncan A. Forbes,et al.  A catalogue and analysis of X-ray luminosities of early-type galaxies , 2001 .

[85]  H. Yee Optical continuum and emission-line luminosity of active galactic nuclei and quasars , 1980 .

[86]  R. Cid Fernandes,et al.  The nature of LINER galaxies: Ubiquitous hot old stars and rare accreting black holes , 2013, Proceedings of the International Astronomical Union.

[87]  C. Peng How Mergers May Affect the Mass Scaling Relation between Gravitationally Bound Systems , 2007 .