Putting scales into evolutionary time: the divergence of major scale insect lineages (Hemiptera) predates the radiation of modern angiosperm hosts

[1]  Douglass R. Miller,et al.  ScaleNet: a literature-based model of scale insect biology and systematics , 2016, Database J. Biol. Databases Curation.

[2]  F. Ronquist,et al.  Ecology, Evolution and Organismal Biology Publications Ecology, Evolution and Organismal Biology Total-evidence Dating under the Fossilized Birth–death Process , 2022 .

[3]  Peter Crane,et al.  Heterogeneous Rates of Molecular Evolution and Diversification Could Explain the Triassic Age Estimate for Angiosperms Systematic Biology Advance Access Published May 4, 2015 , 2022 .

[4]  D. Grimaldi,et al.  Diverse New Scale Insects (Hemiptera: Coccoidea) in Amber from the Cretaceous and Eocene with a Phylogenetic Framework for Fossil Coccoidea , 2015 .

[5]  C. Hodgson,et al.  The case for using the infraorder Coccomorpha above the superfamily Coccoidea for the scale insects (Hemiptera: Sternorrhyncha). , 2014, Zootaxa.

[6]  Hong Ma,et al.  Resolution of deep angiosperm phylogeny using conserved nuclear genes and estimates of early divergence times , 2014, Nature Communications.

[7]  I. Vea Morphology of the Males of Seven Species of Ortheziidae (Hemiptera: Coccoidea) , 2014 .

[8]  D. Ksepka,et al.  Flying rocks and flying clocks: disparity in fossil and molecular dates for birds , 2014, Proceedings of the Royal Society B: Biological Sciences.

[9]  M. Eremets,et al.  Ammonia as a case study for the spontaneous ionization of a simple hydrogen-bonded compound , 2014, Nature Communications.

[10]  S. Magallón A review of the effect of relaxed clock method, long branches, genes, and calibrations in the estimation of angiosperm age , 2014 .

[11]  J. Huelsenbeck,et al.  The fossilized birth–death process for coherent calibration of divergence-time estimates , 2013, Proceedings of the National Academy of Sciences.

[12]  C. Hodgson,et al.  The phylogeny of the superfamily Coccoidea (Hemiptera: Sternorrhyncha) based on the morphology of extant and extinct macropterous males , 2013 .

[13]  S. Feist-Burkhardt,et al.  Angiosperm-like pollen and Afropollis from the Middle Triassic (Anisian) of the Germanic Basin (Northern Switzerland) , 2013, Front. Plant Sci..

[14]  N. Hardy The status and future of scale insect (Coccoidea) systematics , 2013 .

[15]  D. Grimaldi,et al.  Arthropods in amber from the Triassic Period , 2012, Proceedings of the National Academy of Sciences.

[16]  Ramón Doallo,et al.  CircadiOmics: integrating circadian genomics, transcriptomics, proteomics and metabolomics , 2012, Nature Methods.

[17]  Seraina Klopfstein,et al.  A Total-Evidence Approach to Dating with Fossils, Applied to the Early Radiation of the Hymenoptera , 2012, Systematic biology.

[18]  Shane S. Sturrock,et al.  Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data , 2012, Bioinform..

[19]  A. Nel,et al.  The Oldest Aphid Insect from the Middle Triassic of the Vosges, France , 2011 .

[20]  N. Janz Ehrlich and Raven Revisited: Mechanisms Underlying Codiversification of Plants and Enemies , 2011 .

[21]  Mark A. Miller,et al.  Creating the CIPRES Science Gateway for inference of large phylogenetic trees , 2010, 2010 Gateway Computing Environments Workshop (GCE).

[22]  J. Fordyce Host shifts and evolutionary radiations of butterflies , 2010, Proceedings of the Royal Society B: Biological Sciences.

[23]  S. Magallón Using fossils to break long branches in molecular dating: a comparison of relaxed clocks applied to the origin of angiosperms. , 2010, Systematic biology.

[24]  M. Donoghue,et al.  An uncorrelated relaxed-clock analysis suggests an earlier origin for flowering plants , 2010, Proceedings of the National Academy of Sciences.

[25]  D. Futuyma,et al.  Evolutionary history and species interactions , 2009, Proceedings of the National Academy of Sciences.

[26]  D. Futuyma,et al.  Macroevolution and the biological diversity of plants and herbivores , 2009, Proceedings of the National Academy of Sciences.

[27]  D. Futuyma Ecology, Speciation, and Adaptive Radiation: The Long View , 2008 .

[28]  N. Hardy,et al.  Relationships among felt scale insects (Hemiptera : Coccoidea : Eriococcidae) of southern beech, Nothofagus (Nothofagaceae), with the first descriptions of Australian species of the Nothofagus-feeding genus Madarococcus Hoy , 2008 .

[29]  G. Howe,et al.  Plant immunity to insect herbivores. , 2008, Annual review of plant biology.

[30]  L. Cook,et al.  Phylogeny and higher classification of the scale insects (Hemiptera: Sternorrhyncha: Coccoidea)* , 2007 .

[31]  T. Mitchell-Olds,et al.  The genetic basis of a plant–insect coevolutionary key innovation , 2007, Proceedings of the National Academy of Sciences.

[32]  D. Bryant,et al.  A general comparison of relaxed molecular clock models. , 2007, Molecular biology and evolution.

[33]  C. Hodgson,et al.  A taxonomic review of the Margarodoid genus Stigmacoccus Hempel (Hemiptera: Sternorrhyncha: Coccoidea: Stigmacoccidae), with some details on their biology , 2007 .

[34]  Paul M. Choate,et al.  Evolution of the Insects , 2006 .

[35]  C. Hodgson,et al.  A review of the Margarodidae sensu Morrison (Hemiptera: Coccoidea) and some related taxa based on the morphology of adult males , 2006 .

[36]  V. Savolainen,et al.  60 million years of co-divergence in the fig–wasp symbiosis , 2005, Proceedings of the Royal Society B: Biological Sciences.

[37]  Geoffrey E. Morse,et al.  A molecular phylogenetic study of armoured scale insects (Hemiptera: Diaspididae) , 2005 .

[38]  P. Baumann Biology bacteriocyte-associated endosymbionts of plant sap-sucking insects. , 2005, Annual review of microbiology.

[39]  D. Downie,et al.  Phylogenetic congruence of mealybugs and their primary endosymbionts , 2005, Journal of evolutionary biology.

[40]  L. Cook,et al.  The gall-inducing habit has evolved multiple times among the eriococcid scale insects (Sternorrhyncha: Coccoidea: Eriococcidae) , 2004 .

[41]  M. Gandolfo,et al.  Fossil evidence and phylogeny: the age of major angiosperm clades based on mesofossil and macrofossil evidence from Cretaceous deposits. , 2004, American journal of botany.

[42]  Roderic D M Page,et al.  Plant-insect interactions: double-dating associated insect and plant lineages reveals asynchronous radiations. , 2004, Systematic biology.

[43]  Korbinian Strimmer,et al.  APE: Analyses of Phylogenetics and Evolution in R language , 2004, Bioinform..

[44]  J. Koteja Scale insects (Hemiptera: Coccinea) from cretaceous Myanmar (Burmese) amber , 2004 .

[45]  John P. Huelsenbeck,et al.  MrBayes 3: Bayesian phylogenetic inference under mixed models , 2003, Bioinform..

[46]  O. Pellmyr,et al.  Yuccas, yucca moths, and coevolution: A review , 2003 .

[47]  K. Katoh,et al.  MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. , 2002, Nucleic acids research.

[48]  C. Dietrich,et al.  Phylogeny of the major lineages of Membracoidea (Insecta: Hemiptera: Cicadomorpha) based on 28S rDNA sequences. , 2001, Molecular phylogenetics and evolution.

[49]  Brian D. Farrell,et al.  "Inordinate Fondness" explained: why are there So many beetles? , 1998, Science.

[50]  Brian D. Farrell,et al.  20. Evolution of Larval Food Preferences in Lepidoptera , 1998 .

[51]  N. Moran,et al.  Molecular phylogeny of the homoptera: a paraphyletic taxon , 1995, Journal of Molecular Evolution.

[52]  R. Poole,et al.  A highly conserved nuclear gene for low-level phylogenetics: elongation factor-1 alpha recovers morphology-based tree for heliothine moths. , 1995, Molecular biology and evolution.

[53]  J. Sepkoski,et al.  Insect diversity in the fossil record. , 1993, Science.

[54]  Brian D. Farrell,et al.  The Phylogenetic Study of Adaptive Zones: Has Phytophagy Promoted Insect Diversification? , 1988, The American Naturalist.

[55]  M. Kreitzer The Long View , 1966, Nature.

[56]  P. Raven,et al.  BUTTERFLIES AND PLANTS: A STUDY IN COEVOLUTION , 1964 .

[57]  G. Ortí,et al.  An evaluation of fossil tip-dating versus node-age calibrations in tetraodontiform fishes (Teleostei: Percomorphaceae). , 2015, Molecular phylogenetics and evolution.

[58]  Xiao-Quan Wang,et al.  Phylogenetic relationships, possible ancient hybridization, and biogeographic history of Abies (Pinaceae) based on data from nuclear, plastid, and mitochondrial genomes. , 2015, Molecular phylogenetics and evolution.

[59]  Olivier Gascuel,et al.  Mathematical and computational evolutionary biology (2013). , 2015, Systematic biology.

[60]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[61]  C. Hodgson Phenacoleachia, Steingelia, Pityococcus and Puto - Neococcoids or Archaeococcoids? An Intuitive Phylogenetic Discussion Based on Adult Male Characters , 2014 .

[62]  E. Canuel,et al.  Molecular and Fossil Evidence on the Origin of Angiosperms , 2012 .

[63]  Dany Azar,et al.  Scale insects from Lower Cretaceous amber of Lebanon (hemiptera: Sternorrhyncha: Coccinea) , 2008 .

[64]  J. Feder,et al.  Sympatric speciation in phytophagous insects: moving beyond controversy? , 2002, Annual review of entomology.

[65]  P. Wegierek Relationships within Aphidomorpha on the Basis of Thorax Morphology , 2002 .

[66]  J. Koteja Advances in the study of fossil coccids [Hemiptera: Coccinea] , 2000 .

[67]  P. Gullan,et al.  Adaptations in scale insects. , 1997, Annual review of entomology.

[68]  G. J. Brenner Evidence for the Earliest Stage of Angiosperm Pollen Evolution: A Paleoequatorial Section from Israel , 1996 .

[69]  Evelina Markovna Dant︠s︡ig Coccids of the far-eastern USSR(Homoptera, coccinea) : phylogenetic analysis of coccids in the World fauna , 1990 .

[70]  Robert C. Wolpert,et al.  A Review of the , 1985 .

[71]  J. Hoy Eriococcidae (Homoptera, Coccoidea) of New Zealand , 1962 .