On Ultrafast X-ray Methods for Magnetism

With the introduction of x-ray free electron laser sources around the world, new scientific approaches for visualizing matter at fundamental length and time-scales have become possible. As it relates to magnetism and"magnetic-type"systems, advanced methods are being developed for studying ultrafast magnetic responses on the time-scales at which they occur. We describe three capabilities which have the potential to seed new directions in this area and present original results from each: pump-probe x-ray scattering with low energy excitation, x-ray photon fluctuation spectroscopy, and ultrafast diffuse x-ray scattering. By combining these experimental techniques with advanced modeling together with machine learning, we describe how the combination of these domains allows for a new understanding in the field of magnetism. Finally, we give an outlook for future areas of investigation and the newly developed instruments which will take us there.

[1]  Tadesse A. Assefa,et al.  The fluctuation-dissipation measurement instrument at the Linac Coherent Light Source. , 2022, The Review of scientific instruments.

[2]  Sathya R. Chitturi,et al.  A machine learning photon detection algorithm for coherent x-ray ultrafast fluctuation analysis , 2022, Structural dynamics.

[3]  F. Decker,et al.  Tunable x-ray free electron laser multi-pulses with nanosecond separation , 2022, Scientific Reports.

[4]  W. Schlotter,et al.  Enhanced charge density wave coherence in a light-quenched, high-temperature superconductor , 2020, Science.

[5]  Hongwei Chen,et al.  Systematic improvement of neural network quantum states using Lanczos , 2022, NeurIPS.

[6]  L. Balents,et al.  Giant modulation of optical nonlinearity by Floquet engineering , 2021, Nature.

[7]  R. Kukreja,et al.  Capturing ultrafast magnetization phenomenon using femtosecond x rays , 2021, APL Materials.

[8]  F. Decker,et al.  Spontaneous fluctuations in a magnetic Fe/Gd skyrmion lattice , 2021, Physical Review Research.

[9]  M. Seaberg,et al.  Absolute contrast estimation for soft X-ray photon fluctuation spectroscopy using a variational droplet model , 2021, Scientific Reports.

[10]  J. Turner,et al.  A snapshot review—Fluctuations in quantum materials: from skyrmions to superconductivity , 2021, MRS Advances.

[11]  V. Gopalan,et al.  Subterahertz collective dynamics of polar vortices , 2021, Nature.

[12]  C. N. Lau,et al.  Engineering symmetry breaking in 2D layered materials , 2021, Nature Reviews Physics.

[13]  Y. Tokura,et al.  Crystallization of magnetic skyrmions in MnSi investigated by neutron spin echo spectroscopy , 2020, Physical Review Research.

[14]  F. Giustino,et al.  The 2021 quantum materials roadmap , 2020, Journal of Physics: Materials.

[15]  B. Diény,et al.  Review on spintronics: Principles and device applications , 2020, Journal of Magnetism and Magnetic Materials.

[16]  M. Sutton,et al.  Accurate contrast determination for X-ray speckle visibility spectroscopy , 2020, Journal of synchrotron radiation.

[17]  W. Schlotter,et al.  Decoupling spin-orbital correlations in a layered manganite amidst ultrafast hybridized charge-transfer band excitation , 2020, Physical Review B.

[18]  F. Decker,et al.  Skyrmion fluctuations at a first-order phase transition boundary , 2020, Applied Physics Letters.

[19]  Y. Kohmura,et al.  Dynamical Heterogeneity near Glass Transition Temperature under Shear Conditions. , 2020, Physical review letters.

[20]  John H. Gaida,et al.  Few-nm tracking of current-driven magnetic vortex orbits using ultrafast Lorentz microscopy , 2020 .

[21]  Berkeley,et al.  Direct measurement of temporal correlations above the spin-glass transition by coherent resonant magnetic x-ray spectroscopy , 2020, 2002.04259.

[22]  G. Ehlers,et al.  High-resolution neutron spectroscopy using backscattering and neutron spin-echo spectrometers in soft and hard condensed matter , 2020 .

[23]  J. Perdew,et al.  Competing stripe and magnetic phases in the cuprates from first principles , 2019, Proceedings of the National Academy of Sciences.

[24]  Weiwei Wang,et al.  Lorentz transmission electron microscopy for magnetic skyrmions imaging , 2019, Chinese Physics B.

[25]  Yanwen Sun,et al.  Compact hard x-ray split-delay system based on variable-gap channel-cut crystals. , 2019, Optics letters.

[26]  Suprem R. Das,et al.  Magnetic skyrmions in atomic thin CrI3 monolayer , 2019, Applied Physics Letters.

[27]  Kenny Choo,et al.  Two-dimensional frustrated J1−J2 model studied with neural network quantum states , 2019, Physical Review B.

[28]  Xiang Zhang,et al.  Two-dimensional magnetic crystals and emergent heterostructure devices , 2019, Science.

[29]  Iceland,et al.  Spirit : Multifunctional framework for atomistic spin simulations , 2019, Physical Review B.

[30]  Su Ji Park,et al.  An ultrafast symmetry switch in a Weyl semimetal , 2019, Nature.

[31]  P. Zolnierczuk,et al.  Direct measurement of topological interactions in polymers under shear using neutron spin echo spectroscopy , 2018, Scientific Reports.

[32]  D. Mandrus,et al.  Magnetism in two-dimensional van der Waals materials , 2018, Nature.

[33]  R. Hartmann,et al.  Towards ultrafast dynamics with split-pulse X-ray photon correlation spectroscopy at free electron laser sources , 2018, Nature Communications.

[34]  F. Decker,et al.  Pulse intensity characterization of the LCLS nanosecond double-bunch mode of operation , 2018, Journal of synchrotron radiation.

[35]  Takashi Taniguchi,et al.  Unconventional superconductivity in magic-angle graphene superlattices , 2018, Nature.

[36]  M. Murnane,et al.  Critical behavior within 20 fs drives the out-of-equilibrium laser-induced magnetic phase transition in nickel , 2018, Science Advances.

[37]  F. Parmigiani,et al.  Ultrafast magnetodynamics with free-electron lasers , 2018, Journal of physics. Condensed matter : an Institute of Physics journal.

[38]  C. Ropers,et al.  Nanoscale Mapping of Ultrafast Magnetization Dynamics with Femtosecond Lorentz Microscopy , 2017, Physical Review X.

[39]  B. Keimer,et al.  The physics of quantum materials , 2017, Nature Physics.

[40]  S. Boutet,et al.  The Linac Coherent Light Source: Recent Developments and Future Plans , 2017 .

[41]  M Sikorski,et al.  Nanosecond X-Ray Photon Correlation Spectroscopy on Magnetic Skyrmions. , 2017, Physical review letters.

[42]  P. Fischer,et al.  Resonant properties of dipole skyrmions in amorphous Fe/Gd multilayers , 2017, 1702.04691.

[43]  P. Fischer,et al.  Tailoring magnetic energies to form dipole skyrmions and skyrmion lattices , 2016, 1608.01368.

[44]  Nora Berrah,et al.  Fresh-slice multicolour X-ray free-electron lasers , 2016, Nature Photonics.

[45]  G. Finocchio,et al.  Magnetic skyrmions: from fundamental to applications , 2016 .

[46]  P. Fischer,et al.  Synthesizing skyrmion bound pairs in Fe-Gd thin films , 2016, 1603.07882.

[47]  Sébastien Boutet,et al.  Linac Coherent Light Source: The first five years , 2016 .

[48]  C. Stamm The X-ray View on Ultrafast Magnetism , 2016 .

[49]  T. J. Hicks,et al.  Magnetic structure of the quasi-two-dimensional antiferromagnet NiPS3 , 2015 .

[50]  Joshua J. Turner,et al.  Enhanced coherent oscillations in the superconducting state of underdoped YB a 2 C u 3 O 6 +x induced via ultrafast terahertz excitation , 2015 .

[51]  Thomas Brox,et al.  U-Net: Convolutional Networks for Biomedical Image Segmentation , 2015, MICCAI.

[52]  W. Schlotter,et al.  Spatially resolved ultrafast magnetic dynamics initiated at a complex oxide heterointerface. , 2015, Nature materials.

[53]  William E. White,et al.  Free-electron Lasers , 2022 .

[54]  Adrienn Ruzsinszky,et al.  Strongly Constrained and Appropriately Normed Semilocal Density Functional. , 2015, Physical review letters.

[55]  Ankush Mitra,et al.  Combining THz laser excitation with resonant soft X-ray scattering at the Linac Coherent Light Source , 2015, Journal of synchrotron radiation.

[56]  Ankush Mitra,et al.  The Soft X-ray Research instrument at the Linac Coherent Light Source , 2015, Journal of synchrotron radiation.

[57]  W. Schlotter,et al.  Orbital-specific mapping of the ligand exchange dynamics of Fe(CO)5 in solution , 2015, Nature.

[58]  S. V. Streltsov,et al.  Calculation of exchange constants of the Heisenberg model in plane-wave-based methods using the Green's function approach , 2014, 1411.4169.

[59]  Trevor Darrell,et al.  Fully Convolutional Networks for Semantic Segmentation , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[60]  Junwei Liu,et al.  Quantum spin Hall effect in two-dimensional transition metal dichalcogenides , 2014, Science.

[61]  L. Lurio,et al.  X‐ray Photon Correlation Spectroscopy Studies of Surfaces and Thin Films , 2014, Advanced materials.

[62]  A. Cavalleri,et al.  Femtosecond x rays link melting of charge-density wave correlations and light-enhanced coherent transport in YBa2Cu3O6.6 , 2014, 1502.05343.

[63]  M Sikorski,et al.  A time-dependent order parameter for ultrafast photoinduced phase transitions. , 2014, Nature materials.

[64]  Stephen R. Leone,et al.  Shapes and vorticities of superfluid helium nanodroplets , 2014, Science.

[65]  T. Loew,et al.  Nonlinear lattice dynamics as a basis for enhanced superconductivity in YBa2Cu3O6.5 , 2014, Nature.

[66]  C. Vicario,et al.  Large-Amplitude Spin Dynamics Driven by a THz Pulse in Resonance with an Electromagnon , 2014, Science.

[67]  M. Weinert,et al.  Tuning Dirac states by strain in the topological insulator Bi2Se3 , 2014, Nature Physics.

[68]  Joshua J. Turner,et al.  Photoinduced melting of magnetic order in the correlated electron insulator NdNiO 3 , 2013 .

[69]  Klaus Sokolowski-Tinten,et al.  Fourier-transform inelastic X-ray scattering from time- and momentum-dependent phonon–phonon correlations , 2013, Nature Physics.

[70]  A. Parola,et al.  Direct evidence for a gapless $Z_2$ spin liquid by frustrating Néel antiferromagnetism , 2013, 1304.2630.

[71]  A. P. Sorini,et al.  Real-time manifestation of strongly coupled spin and charge order parameters in stripe-ordered La(1.75)Sr(0.25)NiO(4) nickelate crystals using time-resolved resonant x-ray diffraction. , 2013, Physical review letters.

[72]  Steven R. White,et al.  Real-space parallel density matrix renormalization group , 2013, 1301.3494.

[73]  Mirko Scholz,et al.  A setup for resonant inelastic soft x-ray scattering on liquids at free electron laser light sources. , 2012, The Review of scientific instruments.

[74]  C. H. Keitel,et al.  An unexpectedly low oscillator strength as the origin of the Fe xvii emission problem , 2012, Nature.

[75]  Garth J. Williams,et al.  High-Resolution Protein Structure Determination by Serial Femtosecond Crystallography , 2012, Science.

[76]  L. Juha,et al.  The soft x-ray instrument for materials studies at the linac coherent light source x-ray free-electron laser. , 2012, The Review of scientific instruments.

[77]  Matthias Troyer,et al.  Multigrid algorithms for tensor network states. , 2012, Physical review letters.

[78]  J. Turner,et al.  Ultrafast X-ray Experiments Using Terahertz Excitation , 2012 .

[79]  J. Chalupský,et al.  Creation and diagnosis of a solid-density plasma with an X-ray free-electron laser , 2012, Nature.

[80]  A. P. Sorini,et al.  Phase fluctuations and the absence of topological defects in a photo-excited charge-ordered nickelate , 2012, Nature Communications.

[81]  Massimo Altarelli,et al.  The European X-ray free-electron laser facility in Hamburg , 2011 .

[82]  J. Joseph,et al.  Development of a compact fast CCD camera and resonant soft x-ray scattering endstation for time-resolved pump-probe experiments. , 2011, The Review of scientific instruments.

[83]  J. P. Hill,et al.  Driving magnetic order in a manganite by ultrafast lattice excitation , 2011, 1105.3866.

[84]  Georg Weidenspointner,et al.  Femtosecond X-ray protein nanocrystallography , 2011, Nature.

[85]  U. Schollwoeck The density-matrix renormalization group in the age of matrix product states , 2010, 1008.3477.

[86]  Y. Tokura,et al.  Optical investigation of the collective dynamics of charge-orbital density waves in layered manganites , 2010 .

[87]  T. Rasing,et al.  Ultrafast optical manipulation of magnetic order , 2010 .

[88]  J. Hajdu,et al.  Time-resolved pump-probe experiments at the LCLS. , 2010, Optics express.

[89]  S. T. Pratt,et al.  Femtosecond electronic response of atoms to ultra-intense X-rays , 2010, Nature.

[90]  M. V. Tretyakov,et al.  Stable and fast semi-implicit integration of the stochastic Landau–Lifshitz equation , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[91]  J. Richter,et al.  The spin-1/2 J1–J2 Heisenberg antiferromagnet on the square lattice: Exact diagonalization for N=40 spins , 2009, 0909.3723.

[92]  P. Böni,et al.  Skyrmion Lattice in a Chiral Magnet , 2009, Science.

[93]  T Autenrieth,et al.  Measuring temporal speckle correlations at ultrafast x-ray sources. , 2009, Optics express.

[94]  Hideo Aoki,et al.  Photovoltaic Hall effect in graphene , 2008, 0807.4767.

[95]  Mark Sutton,et al.  A review of X-ray intensity fluctuation spectroscopy , 2008 .

[96]  F. Verstraete,et al.  Matrix product operator representations , 2008, 0804.3976.

[97]  N. Marzari,et al.  wannier90: A tool for obtaining maximally-localised Wannier functions , 2007, Comput. Phys. Commun..

[98]  Holger Fehske,et al.  Exact Diagonalization Techniques , 2008 .

[99]  P. Manuel,et al.  Pinch points and Kasteleyn transitions in kagome ice , 2007 .

[100]  I. McCulloch From density-matrix renormalization group to matrix product states , 2007, cond-mat/0701428.

[101]  G. Ehlers,et al.  Neutron-Spin-Echo Spectroscopy and Magnetism , 2006 .

[102]  S. White Density matrix renormalization group algorithms with a single center site , 2005, cond-mat/0508709.

[103]  Matthias Troyer,et al.  Computational complexity and fundamental limitations to fermionic quantum Monte Carlo simulations , 2004, Physical review letters.

[104]  S. Sarma,et al.  Spintronics: Fundamentals and applications , 2004, cond-mat/0405528.

[105]  M. Cazalilla,et al.  Time-dependent density-matrix renormalization group: a systematic method for the study of quantum many-body out-of-equilibrium systems. , 2001, Physical review letters.

[106]  Y. Tokura,et al.  Charge-orbital ordering and ferromagnetic chains in single-layered manganite crystals , 2001 .

[107]  U. Rößler,et al.  Chiral symmetry breaking in magnetic thin films and multilayers. , 2001, Physical review letters.

[108]  S. White,et al.  Dynamical correlation functions using the density matrix renormalization group , 1998, cond-mat/9812372.

[109]  Merle,et al.  Ultrafast spin dynamics in ferromagnetic nickel. , 1996, Physical review letters.

[110]  J. Hill,et al.  Resonant Exchange Scattering: Polarization Dependence and Correlation Function , 1996 .

[111]  D. Mauri,et al.  Magnetism with picosecond field pulses , 1995 .

[112]  A. Hubert,et al.  Thermodynamically stable magnetic vortex states in magnetic crystals , 1994 .

[113]  White,et al.  Density matrix formulation for quantum renormalization groups. , 1992, Physical review letters.

[114]  Joy,et al.  Magnetism in the layered transition-metal thiophosphates MPS3 (M=Mn, Fe, and Ni). , 1992, Physical review. B, Condensed matter.

[115]  White,et al.  Sign problem in the numerical simulation of many-electron systems. , 1990, Physical review. B, Condensed matter.

[116]  M. Blume Magnetic scattering of x rays (invited) , 1985 .

[117]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[118]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[119]  T. Moriya Anisotropic Superexchange Interaction and Weak Ferromagnetism , 1960 .

[120]  I. Dzyaloshinsky A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics , 1958 .