A rule-based development of incremental models

Abstract In the study, we propose a concept of incremental fuzzy models in which fuzzy rules are aimed at compensating discrepancies resulting because of the use of a certain global yet simple model of general nature (such as e.g., a constant or linear regression). The structure of input data and error discovered through fuzzy clustering is captured in the form of a collection of fuzzy clusters, which helps eliminate (compensate) error produced by the global model. We discuss a detailed architecture of the proposed rule-based model and present its design based on an augmented version of Fuzzy C-Means (FCM). An extended suite of experimental studies offering some comparative analysis is covered as well.

[1]  Zi-Qiang Lang,et al.  An Orthogonal Least Squares based approach to FIR designs , 2005, Int. J. Autom. Comput..

[2]  Marzuki Khalid,et al.  Optimization of fuzzy model using genetic algorithm for process control application , 2011, J. Frankl. Inst..

[3]  Bo Fu,et al.  T–S Fuzzy Model Identification With a Gravitational Search-Based Hyperplane Clustering Algorithm , 2012, IEEE Transactions on Fuzzy Systems.

[4]  Ajith Abraham,et al.  Engineering Evolutionary Intelligent Systems , 2008, Studies in Computational Intelligence.

[5]  Plamen P. Angelov,et al.  An approach for fuzzy rule-base adaptation using on-line clustering , 2004, Int. J. Approx. Reason..

[6]  Edwin Lughofer,et al.  FLEXFIS: A Robust Incremental Learning Approach for Evolving Takagi–Sugeno Fuzzy Models , 2008, IEEE Transactions on Fuzzy Systems.

[7]  N. Draper,et al.  Applied Regression Analysis. , 1967 .

[8]  Dragan Kukolj,et al.  Design of adaptive Takagi-Sugeno-Kang fuzzy models , 2002, Appl. Soft Comput..

[9]  Manfred Männle,et al.  Parameter optimization for Takagi-Sugeno fuzzy models-lessons learnt , 2001, SMC.

[10]  Martin A. Riedmiller,et al.  A direct adaptive method for faster backpropagation learning: the RPROP algorithm , 1993, IEEE International Conference on Neural Networks.

[11]  Weihua Li,et al.  Recursive PCA for Adaptive Process Monitoring , 1999 .

[12]  Moez. Soltani,et al.  A modified fuzzy c-regression model clustering algorithm for T-S fuzzy model identification , 2011, Eighth International Multi-Conference on Systems, Signals & Devices.

[13]  Hossein Nezamabadi-pour,et al.  GSA: A Gravitational Search Algorithm , 2009, Inf. Sci..

[14]  Sung-Kwun Oh,et al.  Hybrid identification of fuzzy rule‐based models , 2002, Int. J. Intell. Syst..

[15]  Sung-Kwun Oh,et al.  Identification of fuzzy models using a successive tuning method with a variant identification ratio , 2008, Fuzzy Sets Syst..

[16]  Dirk A. Lorenz,et al.  A generalized conditional gradient method for nonlinear operator equations with sparsity constraints , 2007 .

[17]  Edwin Lughofer,et al.  On-line elimination of local redundancies in evolving fuzzy systems , 2011, Evol. Syst..

[18]  S. Chatterjee,et al.  Influential Observations, High Leverage Points, and Outliers in Linear Regression , 1986 .

[19]  L. Rabiner,et al.  The acoustics, speech, and signal processing society - A historical perspective , 1984, IEEE ASSP Magazine.

[20]  Plamen P. Angelov,et al.  PANFIS: A Novel Incremental Learning Machine , 2014, IEEE Transactions on Neural Networks and Learning Systems.

[21]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[22]  Edwin Lughofer,et al.  Evolving Fuzzy Systems - Methodologies, Advanced Concepts and Applications , 2011, Studies in Fuzziness and Soft Computing.

[23]  D.P. Filev,et al.  An approach to online identification of Takagi-Sugeno fuzzy models , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[24]  Jyh-Shing Roger Jang,et al.  Fuzzy Modeling Using Generalized Neural Networks and Kalman Filter Algorithm , 1991, AAAI.

[25]  Norman R. Draper,et al.  Applied regression analysis (2. ed.) , 1981, Wiley series in probability and mathematical statistics.

[26]  Marzuki Khalid,et al.  Tuning of a neuro-fuzzy controller by genetic algorithm , 1999, IEEE Trans. Syst. Man Cybern. Part B.

[27]  Sung-Kwun Oh,et al.  Growing rule-based fuzzy model developed with the aid of fuzzy clustering , 2013, 2013 Joint IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS).

[28]  Deng-Yuan Huang,et al.  Influential Observations , 2011, International Encyclopedia of Statistical Science.

[29]  Stephen L. Chiu,et al.  Fuzzy Model Identification Based on Cluster Estimation , 1994, J. Intell. Fuzzy Syst..

[30]  Sung-Kwun Oh,et al.  Identification of fuzzy systems by means of an auto-tuning algorithm and its application to nonlinear systems , 2000, Fuzzy Sets Syst..

[31]  W. Pedrycz,et al.  Identification of fuzzy models with the aid of evolutionary data granulation , 2001 .

[32]  Robert Babuška,et al.  An overview of fuzzy modeling for control , 1996 .

[33]  Xueli An,et al.  T-S fuzzy model identification based on a novel fuzzy c-regression model clustering algorithm , 2009, Eng. Appl. Artif. Intell..

[34]  L X Wang,et al.  Fuzzy basis functions, universal approximation, and orthogonal least-squares learning , 1992, IEEE Trans. Neural Networks.

[35]  M. J. D. Powell,et al.  Radial basis functions for multivariable interpolation: a review , 1987 .

[36]  Ronald R. Yager,et al.  Learning of Fuzzy Rules by Mountain Clustering , 1992 .

[37]  Frédéric Lafont,et al.  Fuzzy identification of a greenhouse , 2007, Appl. Soft Comput..

[38]  Witold Pedrycz,et al.  The Development of Incremental Models , 2007, IEEE Transactions on Fuzzy Systems.

[39]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1992, Artificial Intelligence.

[40]  Edwin Lughofer,et al.  SparseFIS: Data-Driven Learning of Fuzzy Systems With Sparsity Constraints , 2010, IEEE Transactions on Fuzzy Systems.

[41]  Yang Xu,et al.  Application of fuzzy Naive Bayes and a real-valued genetic algorithm in identification of fuzzy model , 2005, Inf. Sci..

[42]  Jianzhong Zhou,et al.  Parameters identification of hydraulic turbine governing system using improved gravitational search algorithm , 2011 .

[43]  Edwin Lughofer,et al.  Extensions of vector quantization for incremental clustering , 2008, Pattern Recognit..

[44]  Igor Skrjanc,et al.  Supervised Hierarchical Clustering in Fuzzy Model Identification , 2011, IEEE Transactions on Fuzzy Systems.

[45]  Witold Pedrycz,et al.  Fuzzy Systems Engineering - Toward Human-Centric Computing , 2007 .

[46]  R. Gray,et al.  Vector quantization , 1984, IEEE ASSP Magazine.

[47]  John Yen,et al.  Improving the interpretability of TSK fuzzy models by combining global learning and local learning , 1998, IEEE Trans. Fuzzy Syst..

[48]  Witold Pedrycz,et al.  From fuzzy data analysis and fuzzy regression to granular fuzzy data analysis , 2015, Fuzzy Sets Syst..

[49]  Francisco Herrera,et al.  Ten years of genetic fuzzy systems: current framework and new trends , 2004, Fuzzy Sets Syst..

[50]  Dimitar Filev,et al.  Generation of Fuzzy Rules by Mountain Clustering , 1994, J. Intell. Fuzzy Syst..

[51]  M. MendelJ.,et al.  Fuzzy basis functions , 1995 .

[52]  Manfred Männle,et al.  FTSM — Fast Takagi-Sugeno Fuzzy Modeling , 2000 .

[53]  Boaz Lerner,et al.  The Bayesian ARTMAP , 2007, IEEE Transactions on Neural Networks.

[54]  Jyh-Shing Roger Jang,et al.  ANFIS: adaptive-network-based fuzzy inference system , 1993, IEEE Trans. Syst. Man Cybern..

[55]  Michio Sugeno,et al.  Fuzzy identification of systems and its applications to modeling and control , 1985, IEEE Transactions on Systems, Man, and Cybernetics.