Atomistic simulation of the free energies of dissolution of ions from flat and stepped calcite surfaces

[1]  P. Dove,et al.  Effects of temperature and transport conditions on calcite growth in the presence of Mg2+: Implications for paleothermometry , 2005 .

[2]  S. C. Parker,et al.  Molecular dynamics simulations of the interactions between water and inorganic solids , 2005 .

[3]  P. Unwin,et al.  Atomic force microscopy investigation of the mechanism of calcite microcrystal growth under Kitano conditions. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[4]  A. Putnis,et al.  Crystal growth and dissolution processes at the calcite–water interface in the presence of zinc ions , 2005 .

[5]  S. C. Parker,et al.  Free energy of adsorption of water and calcium on the [10 1 4] calcite surface. , 2004, Chemical communications.

[6]  E. DiMasi,et al.  Three-dimensional structure of the calcite-water interface by surface X-ray scattering , 2004 .

[7]  K. Refson,et al.  Modeling steps and kinks on the surface of calcite. , 2004, The Journal of chemical physics.

[8]  S. C. Parker,et al.  Free energy of adsorption of water and metal ions on the [1014] calcite surface. , 2004, Journal of the American Chemical Society.

[9]  S. Martin,et al.  Dissolution rates and pit morphologies of rhombohedral carbonate minerals , 2004 .

[10]  S. C. Parker,et al.  Atomistic Simulation of the Dissociative Adsorption of Water on Calcite Surfaces , 2003 .

[11]  A. Rohl,et al.  Letters. Evidence from surface phonons for the (2 × 1) reconstruction of the (101̄4) surface of calcite from computer simulation , 2003 .

[12]  J. Harding,et al.  Modelling the interfaces between calcite crystals and Langmuir monolayers , 2002 .

[13]  J. Morse,et al.  The dissolution kinetics of major sedimentary carbonate minerals , 2002 .

[14]  B. Slater,et al.  Computer simulation of calcite growth inhibition: A study of monophosphonate interaction with calcite , 2002 .

[15]  E. DiMasi,et al.  Surface speciation of calcite observed in situ by high-resolution X-ray reflectivity , 2000 .

[16]  S. C. Parker,et al.  Molecular dynamics simulation of crystal dissolution from calcite steps , 1999 .

[17]  P. Fenter,et al.  Structure and growth of stearate monolayers on calcite; first results of an in situ X-ray reflectivity study , 1999 .

[18]  M. Odelius Mixed Molecular and Dissociative Water Adsorption on MgO[100] , 1999 .

[19]  Stephen C. Parker,et al.  Molecular-dynamics simulation of MgO surfaces in liquid water using a shell-model potential for water , 1998 .

[20]  S. C. Parker,et al.  Modeling the Competitive Adsorption of Water and Methanoic Acid on Calcite and Fluorite Surfaces , 1998 .

[21]  S. C. Parker,et al.  Surface Structure and Morphology of Calcium Carbonate Polymorphs Calcite, Aragonite, and Vaterite: An Atomistic Approach , 1998 .

[22]  D. Baer,et al.  Anisotropic dissolution at the CaCO3(101̄4)—water interface , 1997 .

[23]  J. P. Lafemina,et al.  Kinetic Monte Carlo investigation of pit formation at the CaCO3(101̄4) surface-water interface , 1997 .

[24]  W Smith,et al.  DL_POLY_2.0: a general-purpose parallel molecular dynamics simulation package. , 1996, Journal of molecular graphics.

[25]  S. C. Parker,et al.  Modelling of the thermal dependence of structural and elastic properties of calcite, CaCO3 , 1996 .

[26]  T. Darden,et al.  A smooth particle mesh Ewald method , 1995 .

[27]  D Fincham,et al.  Shell model simulations by adiabatic dynamics , 1993 .

[28]  A. W. Overhauser,et al.  Theory of the Dielectric Constants of Alkali Halide Crystals , 1958 .

[29]  T. G. Cooper,et al.  A computer modeling study of the inhibiting effect of organic adsorbates on calcite crystal growth , 2004 .

[30]  S. C. Parker,et al.  Atomistic simulation of the effect of molecular adsorption of water on the surface structure and energies of calcite surfaces , 1997 .

[31]  M. Born,et al.  Dynamical Theory of Crystal Lattices , 1954 .