Elliptic General Analytic Solutions

In order to flnd analytically the travelling waves of partially integrable au- tonomous nonlinear partial difierential equations, many methods have been pro- posed over the ages: \projective Riccati method", \tanh-method", \exponential method", \Jacobi expansion method", \new ...", etc. The common default to all these \truncation methods" is to only provide some solutions, not all of them. By implementing three classical results of Briot, Bouquet and Poincare, we present an algorithm able to provide in closed form all those travelling waves which are elliptic or degenerate elliptic, i.e. rational in one exponential or rational. Our examples here include the Kuramoto-Sivashinsky equation and the cubic and quintic complex Ginzburg-Landau equations.

[1]  Paul Manneville,et al.  Dissipative Structures and Weak Turbulence , 1995 .

[2]  M. Ablowitz,et al.  Solitons, Nonlinear Evolution Equations and Inverse Scattering , 1992 .

[3]  A. Hone Non-existence of elliptic travelling wave solutions of the complex Ginzburg–Landau equation , 2005 .

[4]  M. Tabor,et al.  The Painlevé property for partial differential equations , 1983 .

[5]  Robert Conte,et al.  Invariant Painlevé analysis of partial differential equations , 1989 .

[6]  R. Conte,et al.  Analytic solitary waves of nonintegrable equations , 2003, nlin/0302051.

[7]  Andrew Pickering,et al.  A perturbative Painleve´ approach to nonlinear differential equations , 1993 .

[8]  Exact solutions of the saturable discrete nonlinear Schrödinger equation , 2004, nlin/0409057.

[9]  Robert Conte,et al.  Link between solitary waves and projective Riccati equations , 1992 .

[10]  R. Conte Universal invariance properties of Painlevé analysis and Bäcklund transformation in nonlinear partial differential equations , 1988 .

[11]  W. Saarloos Front propagation into unstable states , 2003, cond-mat/0308540.

[12]  Robert Conte,et al.  The Painlevé Handbook , 2020, Mathematical Physics Studies.

[13]  H. Duport,et al.  Sur les équations aux dérivées partielles , 1900 .

[14]  R. Conte,et al.  Painleve analysis and Backlund transformation in the Kuramoto-Sivashinsky equation , 1989 .

[15]  Analytic expressions of hydrothermal waves , 2000, nlin/0009022.

[16]  J. Chazy,et al.  Sur les équations différentielles du troisième ordre et d'ordre supérieur dont l'intégrale générale a ses points critiques fixes , 1911 .

[17]  Y. Kuramoto,et al.  Persistent Propagation of Concentration Waves in Dissipative Media Far from Thermal Equilibrium , 1976 .

[18]  K. Chow,et al.  Doubly periodic waves of a discrete nonlinear Schrödinger system with saturable nonlinearity , 2008, 0812.1196.

[19]  A. Pickering A new truncation in Painleve analysis , 1993 .

[20]  N. Kudryashov,et al.  EXACT SOLITON SOLUTIONS OF THE GENERALIZED EVOLUTION EQUATION OF WAVE DYNAMICS , 1988 .

[21]  Mark J. Ablowitz,et al.  Solitons and the Inverse Scattering Transform , 1981 .

[22]  S. Vernov Elliptic solutions of the quintic complex one-dimensional Ginzburg–Landau equation , 2006, nlin/0602060.

[23]  R. Conte,et al.  Meromorphic solutions of a third order nonlinear differential equation , 2010, 1002.1209.