Photosynthetic Water‐Splitting for Hydrogen Production

This chapter emphasizes photobiological, H2 producing organisms and processes that are able to link photosynthetic water oxidation (reductant-generation) directly to [FeFe]-hydrogenase-catalyzed H2 production function. The biological catalysts involved in H2 metabolism are either nitrogenases or hydrogenases. Interestingly, the [NiFe], [FeFe], and FeS-cluster free types of hydrogenases are almost completely segregated within specific groups of organisms, suggesting convergent evolution. Two distinct H2 photoproduction pathways have been described in green algae, and there is evidence for a third, light-independent, fermentative H2 pathway coupled to starch degradation. A section summarizes the genetics, expression, maturation, structure, and modeling aspects of [FeFe]-hydrogenases, which catalyze H2 production in green algae. The hydrogenase structural genes that have been cloned and sequenced from species of Chlamydomonas, Chlorella, and Scenedesmus are homologues of the [FeFe]-hydrogenases from bacterial organisms. A majority of the [FeFe]-hydrogenase genes and proteins so far isolated exhibit complex structures that are organized into modular domains. Experimental investigations on the molecular engineering of O2 accessibility in [FeFe]-hydrogenase are currently under way. A better understanding of anaerobic metabolism in Chlamydomonas and metabolic fluxes associated with diurnal periods of light and dark will facilitate the development of physiological models able to predict metabolic fluxes under various environmental conditions. Photosynthesis and H2 production in unicellular green algae can in principle operate with a nearly 100% absorbed photon utilization efficiency. The rate of electron transport in the thylakoid membrane of photosynthesis is of importance for defining yield and efficiency of the overall process.

[1]  Major Robert E. Tucker,et al.  Bosnia mission includes waste management... and bioremediation , 2004 .

[2]  B J Lemon,et al.  Reversible carbon monoxide binding and inhibition at the active site of the Fe-only hydrogenase. , 2000, Biochemistry.

[3]  Juergen E. W. Polle,et al.  tla1, a DNA insertional transformant of the green alga Chlamydomonas reinhardtii with a truncated light-harvesting chlorophyll antenna size , 2003, Planta.

[4]  J. Jarrett The novel structure and chemistry of iron-sulfur clusters in the adenosylmethionine-dependent radical enzyme biotin synthase. , 2005, Archives of biochemistry and biophysics.

[5]  M. Ludwig,et al.  Occurrence of Hydrogenases in Cyanobacteria and Anoxygenic Photosynthetic Bacteria: Implications for the Phylogenetic Origin of Cyanobacterial and Algal Hydrogenases , 2006, Journal of Molecular Evolution.

[6]  Michael Seibert,et al.  Dilution methods to deprive Chlamydomonas reinhardtii cultures of sulfur for subsequent hydrogen photoproduction , 2002 .

[7]  Michael Seibert,et al.  Development of Algal Systems for Hydrogen Photoproduction: Addressing the Hydrogenase Oxygen‐sensitivity Problem , 2006 .

[8]  M. Ghirardi,et al.  The dependence of algal H2 production on Photosystem II and O2 consumption activities in sulfur-deprived Chlamydomonas reinhardtii cells. , 2003, Biochimica et biophysica acta.

[9]  Paula Tamagnini,et al.  Hydrogenases and Hydrogen Metabolism of Cyanobacteria , 2002, Microbiology and Molecular Biology Reviews.

[10]  J. Meyer,et al.  Classification and phylogeny of hydrogenases. , 2001, FEMS microbiology reviews.

[11]  A. Ballesteros,et al.  Effects of Light Intensity and Oxidized Nitrogen Sources on Hydrogen Production by Chlamydomonas reinhardii. , 1985, Plant physiology.

[12]  B. Kok,et al.  Photosynthesis: Limited Yields, Unlimited Dreams , 1977 .

[13]  Michael Seibert,et al.  Hydrogenases and hydrogen photoproduction in oxygenic photosynthetic organisms. , 2007, Annual review of plant biology.

[14]  Jack Legrand,et al.  Autotrophic and Mixotrophic Hydrogen Photoproduction in Sulfur-Deprived Chlamydomonas Cells , 2005, Applied and Environmental Microbiology.

[15]  M. Ghirardi,et al.  Sustained hydrogen photoproduction by Chlamydomonas reinhardtii: Effects of culture parameters. , 2002 .

[16]  E. Stauber,et al.  Chlamydomonas reinhardtii proteomics. , 2004, Plant physiology and biochemistry : PPB.

[17]  C. Vonrhein,et al.  The crystal structure of the apoenzyme of the iron-sulphur cluster-free hydrogenase. , 2006, Journal of molecular biology.

[18]  E. Greenbaum,et al.  HYDROGEN and OXYGEN PHOTOPRODUCTION BY MARINE ALGAE * , 1983 .

[19]  G. Peltier,et al.  Inhibitor studies on non-photochemical plastoquinone reduction and H(2) photoproduction in Chlamydomonas reinhardtii. , 2005, Biochimica et biophysica acta.

[20]  H. Senger,et al.  PARTICIPATION OF THE TWO PHOTOSYSTEMS IN LIGHT DEPENDENT HYDROGEN EVOLUTION IN Scenedesmus obliquus , 1985 .

[21]  Michael Seibert,et al.  Photobiological production of hydrogen , 1980 .

[22]  Lu Zhang,et al.  Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii. , 2000, Plant physiology.

[23]  Michael Seibert,et al.  Hydrogen production by sulfur-deprived Chlamydomonas reinhardtii under photoautotrophic conditions , 2006 .

[24]  M. Gorwa,et al.  Molecular characterization and transcriptional analysis of the putative hydrogenase gene of Clostridium acetobutylicum ATCC 824 , 1996, Journal of bacteriology.

[25]  M. Kuntz,et al.  Electron Flow between Photosystem II and Oxygen in Chloroplasts of Photosystem I-deficient Algae Is Mediated by a Quinol Oxidase Involved in Chlororespiration* , 2000, The Journal of Biological Chemistry.

[26]  J. W. Peters,et al.  A radical solution for the biosynthesis of the H‐cluster of hydrogenase , 2006, FEBS letters.

[27]  Jorge F. Reyes-Spindola,et al.  Radical SAM, a novel protein superfamily linking unresolved steps in familiar biosynthetic pathways with radical mechanisms: functional characterization using new analysis and information visualization methods. , 2001, Nucleic acids research.

[28]  Matthew C. Posewitz,et al.  Functional Studies of [FeFe] Hydrogenase Maturation in an Escherichia coli Biosynthetic System , 2006, Journal of bacteriology.

[29]  Gabriel Gelius-Dietrich,et al.  Fe-Hydrogenase Maturases in the Hydrogenosomes of Trichomonas vaginalis , 2006, Eukaryotic Cell.

[30]  L. Brown,et al.  Aquatic biomass and carbon dioxide trapping , 1993 .

[31]  B J Lemon,et al.  X-ray crystal structure of the Fe-only hydrogenase (CpI) from Clostridium pasteurianum to 1.8 angstrom resolution. , 1998, Science.

[32]  J. Naber,et al.  Isolation, characterization and N-terminal amino acid sequence of hydrogenase from the green alga Chlamydomonas reinhardtii. , 1993, European journal of biochemistry.

[33]  A. Melis,et al.  Biochemical and morphological characterization of sulfur-deprived and H2-producing Chlamydomonas reinhardtii (green alga) , 2002, Planta.

[34]  D. Knaff Ferredoxin and Ferredoxin-Dependent Enzymes , 1996 .

[35]  F. Armstrong,et al.  Investigating metalloenzyme reactions using electrochemical sweeps and steps: fine control and measurements with reactants ranging from ions to gases. , 2005, Inorganic chemistry.

[36]  T. Happe,et al.  A Novel Type of Iron Hydrogenase in the Green AlgaScenedesmus obliquus Is Linked to the Photosynthetic Electron Transport Chain* , 2001, The Journal of Biological Chemistry.

[37]  R. Hedderich,et al.  A multisubunit membrane-bound [NiFe] hydrogenase and an NADH-dependent Fe-only hydrogenase in the fermenting bacterium Thermoanaerobacter tengcongensis. , 2004, Microbiology.

[38]  Haroon S. Kheshgi,et al.  The Photobiological Production of Hydrogen: Potential Efficiency and Effectiveness as a Renewable Fuel , 2005, Critical reviews in microbiology.

[39]  A. I. Krasna,et al.  Photoproduction of hydrogen from water in hydrogenase-containing algae. , 1979, Archives of biochemistry and biophysics.

[40]  H. Gest,et al.  Biological Formation of Molecular Hydrogen , 1965, Science.

[41]  F. Healey The Mechanism of Hydrogen Evolution by Chlamydomonas moewusii. , 1970, Plant physiology.

[42]  M. Ghirardi,et al.  Hydrogen Photoproduction Is Attenuated by Disruption of an Isoamylase Gene in Chlamydomonas reinhardtii , 2004, The Plant Cell Online.

[43]  Michel Frey,et al.  Crystal structure of the nickel–iron hydrogenase from Desulfovibrio gigas , 1995, Nature.

[44]  Michael Seibert,et al.  Discovery of Two Novel Radical S-Adenosylmethionine Proteins Required for the Assembly of an Active [Fe] Hydrogenase* , 2004, Journal of Biological Chemistry.

[45]  M. Ghirardi,et al.  Application of gene-shuffling for the rapid generation of novel [FeFe]-hydrogenase libraries , 2006, Biotechnology Letters.

[46]  D. Horner,et al.  Iron hydrogenases--ancient enzymes in modern eukaryotes. , 2002, Trends in biochemical sciences.

[47]  Michael Seibert,et al.  Hydrogen photoproduction under continuous illumination by sulfur-deprived, synchronous Chlamydomonas reinhardtii cultures , 2002 .

[48]  M. Mandrand,et al.  Microbial hydrogenases: primary structure, classification, signatures and phylogeny. , 1993, FEMS microbiology reviews.

[49]  M. Fontecave Iron-sulfur clusters: ever-expanding roles , 2006, Nature chemical biology.

[50]  M. Fontecave,et al.  Biochemical characterization of the HydE and HydG iron‐only hydrogenase maturation enzymes from Thermatoga maritima , 2005, FEBS letters.

[51]  K Schulten,et al.  Molecular dynamics and experimental investigation of H(2) and O(2) diffusion in [Fe]-hydrogenase. , 2005, Biochemical Society transactions.

[52]  Olaf Kruse,et al.  Photosynthesis: a blueprint for solar energy capture and biohydrogen production technologies , 2005, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[53]  Molecular Evidence for a Fe-Hydrogenase in the Green Alga Scenedesmus obliquus , 2001, Current Microbiology.

[54]  J. W. Peters,et al.  Structure and mechanism of iron-only hydrogenases. , 1999, Current opinion in structural biology.

[55]  A. Melis,et al.  Development of the light-harvesting chlorophyll antenna in the green alga Chlamydomonas reinhardtii is regulated by the novel Tla1 gene , 2007, Planta.

[56]  H. Grande,et al.  Redox properties of the iron-sulfur clusters in activated Fe-hydrogenase from Desulfovibrio vulgaris (Hildenborough). , 1992, European journal of biochemistry.

[57]  K. Miyamoto,et al.  Hydrogen evolution as a consumption mode of reducing equivalents in green algal fermentation. , 1987, Plant physiology.

[58]  D. van der Lelie,et al.  H2 production and carbon utilization by Thermotoga neapolitana under anaerobic and microaerobic growth conditions , 2004, Biotechnology Letters.

[59]  P. J. Johnson,et al.  Identification and characterization of [Fe]-hydrogenases in the hydrogenosome of Trichomonas vaginalis. , 1996, Molecular and biochemical parasitology.

[60]  Simon Prochnik,et al.  Novel metabolism in Chlamydomonas through the lens of genomics. , 2007, Current opinion in plant biology.

[61]  A. Melis,et al.  Trails of Green Alga Hydrogen Research – from Hans Gaffron to New Frontiers , 2004, Photosynthesis Research.

[62]  C. Dijk,et al.  The effect of re‐oxidation on the reduced hydrogenase of Desulfovibrio vulgaris strain Hildenborough and its oxygen stability , 1983 .

[63]  C. Drennan,et al.  AdoMet radical proteins--from structure to evolution--alignment of divergent protein sequences reveals strong secondary structure element conservation. , 2004, Nucleic acids research.

[64]  R. M. Cicchillo,et al.  Mechanistic investigations of lipoic acid biosynthesis in Escherichia coli: both sulfur atoms in lipoic acid are contributed by the same lipoyl synthase polypeptide. , 2005, Journal of the American Chemical Society.

[65]  J. A. Mulloney,et al.  Mitigation of carbon dioxide releases from power production via “sustainable agri-power”: The synergistic combination of controlled environmental agriculture (large commercial greenhouses) and disbursed fuel cell power plants , 1993 .

[66]  E. Hatchikian,et al.  The active site of the [FeFe]-hydrogenase from Desulfovibrio desulfuricans. I. Light sensitivity and magnetic hyperfine interactions as observed by electron paramagnetic resonance , 2005, JBIC Journal of Biological Inorganic Chemistry.

[67]  J. Overpeck,et al.  Paleoclimatic Evidence for Future Ice-Sheet Instability and Rapid Sea-Level Rise , 2006, Science.

[68]  J. Naber,et al.  Induction, localization and metal content of hydrogenase in the green alga Chlamydomonas reinhardtii. , 1994, European journal of biochemistry.

[69]  H. Fan,et al.  A capable bridging ligand for Fe-only hydrogenase: density functional calculations of a low-energy route for heterolytic cleavage and formation of dihydrogen. , 2001, Journal of the American Chemical Society.

[70]  M. Huynen,et al.  A hydrogenosomal [Fe]-hydrogenase from the anaerobic chytrid Neocallimastix sp. L2. , 2002, Gene.

[71]  M. Ghirardi,et al.  Expression of two [Fe]-hydrogenases in Chlamydomonas reinhardtii under anaerobic conditions. , 2003, European journal of biochemistry.

[72]  M. I. Khan,et al.  Purification and characterization of putative alkaline [Ni-Fe] hydrogenase from unicellular marine green alga, Tetraselmis kochinensis NCIM 1605. , 2009, Microbiological research.

[73]  Michael Seibert,et al.  Continuous hydrogen photoproduction by Chlamydomonas reinhardtii , 2005, Applied biochemistry and biotechnology.

[74]  S. Shima,et al.  UV-A/blue-light inactivation of the 'metal-free' hydrogenase (Hmd) from methanogenic archaea. , 2004, European journal of biochemistry.

[75]  Robert Eugene Blankenship Molecular mechanisms of photosynthesis , 2002 .

[76]  Olaf Kruse,et al.  Improved Photobiological H2 Production in Engineered Green Algal Cells* , 2005, Journal of Biological Chemistry.

[77]  G. Finazzi,et al.  The Chloroplast Rieske Iron-Sulfur Protein , 2004, Journal of Biological Chemistry.

[78]  B J Lemon,et al.  A novel FeS cluster in Fe-only hydrogenases. , 2000, Trends in biochemical sciences.

[79]  F. A. Neugebauer,et al.  The free radical in pyruvate formate-lyase is located on glycine-734. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[80]  M. R. Leach,et al.  Metallocenter assembly of the hydrogenase enzymes. , 2007, Current opinion in chemical biology.

[81]  W. Martin,et al.  Pyruvate Formate-lyase and a Novel Route of Eukaryotic ATP Synthesis in Chlamydomonas Mitochondria* , 2006, Journal of Biological Chemistry.

[82]  J. Meyer,et al.  [FeFe] hydrogenases and their evolution: a genomic perspective , 2007, Cellular and Molecular Life Sciences.

[83]  P. Frey,et al.  S-Adenosylmethionine: a wolf in sheep's clothing, or a rich man's adenosylcobalamin? , 2003, Chemical reviews.

[84]  Michael Seibert,et al.  Demonstration of sustained hydrogen photoproduction by immobilized, sulfur-deprived Chlamydomonas reinhardtii cells , 2006 .

[85]  K. Niyogi,et al.  Absence of lutein, violaxanthin and neoxanthin affects the functional chlorophyll antenna size of photosystem-II but not that of photosystem-I in the green alga Chlamydomonas reinhardtii. , 2001, Plant & cell physiology.

[86]  R. Wolfe,et al.  ROLE OF FERREDOXIN IN THE METABOLISM OF MOLECULAR HYDROGEN , 1963, Journal of bacteriology.

[87]  J. Myllyharju,et al.  Cloning and Characterization of a Low Molecular Weight Prolyl 4-Hydroxylase from Arabidopsis thaliana , 2002, The Journal of Biological Chemistry.

[88]  S. Albracht Nickel hydrogenases: in search of the active site. , 1994, Biochimica et biophysica acta.

[89]  W. Hagen,et al.  A low-spin iron with CN and CO as intrinsic ligands forms the core of the active site in [Fe]-hydrogenases. , 1998, European journal of biochemistry.

[90]  A. L. Lacey,et al.  The active site of the [FeFe]-hydrogenase from Desulfovibrio desulfuricans. II. Redox properties, light sensitivity and CO-ligand exchange as observed by infrared spectroscopy , 2005, JBIC Journal of Biological Inorganic Chemistry.

[91]  A. Ley,et al.  Absolute absorption cross-sections for Photosystem II and the minimum quantum requirement for photosynthesis in Chlorella vulgaris , 1982 .

[92]  K. Kivirikko,et al.  Characterization of a low-relative-molecular-mass prolyl 4-hydroxylase from the green alga Chlamydomonas reinhardii. , 1987, The Biochemical journal.

[93]  V. Fernández,et al.  Crystallographic and FTIR spectroscopic evidence of changes in Fe coordination upon reduction of the active site of the Fe-only hydrogenase from Desulfovibrio desulfuricans. , 2001, Journal of the American Chemical Society.

[94]  Klaus Schulten,et al.  Structural and functional investigations of biological catalysts for optimization of solar-driven H2 production systems , 2006, SPIE Optics + Photonics.

[95]  A. Melis,et al.  Hydrogen production. Green algae as a source of energy. , 2001, Plant physiology.

[96]  W. Hagen,et al.  Hydrodynamic, structural and magnetic properties of Megasphaera elsdenii Fe hydrogenase reinvestigated. , 1989, European journal of biochemistry.

[97]  Serge Gambarelli,et al.  The [Fe-Fe]-Hydrogenase Maturation Protein HydF from Thermotoga maritima Is a GTPase with an Iron-Sulfur Cluster* , 2006, Journal of Biological Chemistry.

[98]  Lawrence Pitt,et al.  Biohydrogen production: prospects and limitations to practical application , 2004 .

[99]  A. Melis,et al.  Green alga hydrogen production: progress, challenges and prospects , 2002 .

[100]  P. Roessler,et al.  Activation and de novo synthesis of hydrogenase in chlamydomonas. , 1984, Plant physiology.

[101]  P. Homann Hydrogen metabolism of green algae: discovery and early research – a tribute to Hans Gaffron and his coworkers , 2004, Photosynthesis Research.

[102]  E. Greenbaum Photosynthetic Hydrogen and Oxygen Production: Kinetic Studies , 1982, Science.

[103]  J. Willison,et al.  Hydrogenase, nitrogenase, and hydrogen metabolism in the photosynthetic bacteria. , 1985, Advances in microbial physiology.

[104]  A. Grossman,et al.  Insights into the acclimation of Chlamydomonas reinhardtii to sulfur deprivation , 2005, Photosynthesis Research.

[105]  W. Hagen,et al.  UvA-DARE (Digital Academic Repository) Similarities in the architecture of the active sites of Ni-hydrogenases and Fe-hydrogenases detected by means of infrared spectroscopy , 2004 .

[106]  R. Schulz,et al.  HYDROGEN METABOLISM IN ORGANISMS WITH OXYGENIC PHOTOSYNTHESIS : HYDROGENASES AS IMPORTANT REGULATORY DEVICES FOR A PROPER REDOX POISING? , 1998 .

[107]  August Böck,et al.  Maturation of hydrogenases. , 2006, Advances in microbial physiology.

[108]  Hydrogen production by the thermophilic bacterium Thermotoga neapolitana , 2002 .

[109]  J. P. Houchins,et al.  Concentration and function of membrane-bound cytochromes in cyanobacterial heterocysts. , 1984, Plant physiology.

[110]  A. Tsygankov,et al.  The effect of light intensity on hydrogen production by sulfur-deprived Chlamydomonas reinhardtii. , 2004, Journal of biotechnology.

[111]  M. Gibbs,et al.  Fermentative Metabolism of Chlamydomonas reinhardtii: I. Analysis of Fermentative Products from Starch in Dark and Light. , 1984, Plant physiology.

[112]  Wei Zhang,et al.  Two-stage photo-biological production of hydrogen by marine green alga Platymonas subcordiformis , 2004 .

[113]  Michel Frey,et al.  Hydrogenases: Hydrogen‐Activating Enzymes , 2002, Chembiochem : a European journal of chemical biology.

[114]  M. Ghirardi,et al.  Materials Requirements for Photobiological Hydrogen Production , 2007 .

[115]  M. Seibert,et al.  Genomics of green algal hydrogen research , 2004, Photosynthesis Research.

[116]  K. Cammack Producing hydrogen as a fuel , 2001 .

[117]  R. Kennedy,et al.  Anaerobic metabolism in plants. , 1992, Plant physiology.

[118]  M. Adams,et al.  The structure and mechanism of iron-hydrogenases. , 1990, Biochimica et biophysica acta.

[119]  J. Benemann,et al.  Photosynthetic apparatus organization and function in the wild type and a chlorophyll b-less mutant of Chlamydomonas reinhardtii. Dependence on carbon source , 2000, Planta.

[120]  I. Gómez,et al.  Biomass, Energy Contents and Major Organic Compounds in the Brown Alga Lessonia nigrescens (Laminariales, Phaeophyceae) from Mehuín, South Chile , 1996 .

[121]  M. Ghirardi,et al.  Microalgae: a green source of renewable H(2). , 2000, Trends in biotechnology.

[122]  M. Gibbs,et al.  Inactivation of Hydrogenase in Cell-free Extracts and Whole Cells of Chlamydomonas reinhardi by Oxygen. , 1979, Plant physiology.

[123]  E. Duin,et al.  Infrared-detectable groups sense changes in charge density on the nickel center in hydrogenase from Chromatium vinosum. , 1995, Biochemistry.

[124]  J. Gaillard,et al.  Structural similarities between the N-terminal domain of Clostridium pasteurianum hydrogenase and plant-type ferredoxins. , 1999, Biochemistry.

[125]  Michael Seibert,et al.  Continuous hydrogen photoproduction by Chlamydomonas reinhardtii , 2005, Applied biochemistry and biotechnology.

[126]  J. W. Peters,et al.  In vitro activation of [FeFe] hydrogenase: new insights into hydrogenase maturation , 2007, JBIC Journal of Biological Inorganic Chemistry.

[127]  A. Hemschemeier,et al.  The exceptional photofermentative hydrogen metabolism of the green alga Chlamydomonas reinhardtii. , 2005, Biochemical Society transactions.

[128]  Michael Seibert,et al.  Effects of extracellular pH on the metabolic pathways in sulfur-deprived, H2-producing Chlamydomonas reinhardtii cultures. , 2003, Plant & cell physiology.

[129]  Wonjun Park,et al.  A discrete multi states model for the biological production of hydrogen by phototrophic microalga , 2007 .

[130]  M. Kusunoki,et al.  A Structural Basis of Equisetum arvense Ferredoxin Isoform II Producing an Alternative Electron Transfer with Ferredoxin-NADP+ Reductase* , 2005, Journal of Biological Chemistry.

[131]  R. Sawers,et al.  Maturation of [NiFe]-hydrogenases in Escherichia coli , 2007, BioMetals.

[132]  E. Greenbaum,et al.  A new oxygen sensitivity and its potential application in photosynthetic H2 production , 2003 .

[133]  Laurent Cournac,et al.  Limiting steps of hydrogen production in Chlamydomonas reinhardtii and Synechocystis PCC 6803 as analysed by light-induced gas exchange transients , 2002 .

[134]  Dieter Jahn,et al.  Structure and function of radical SAM enzymes. , 2004, Current opinion in chemical biology.

[135]  R. Vazquez-Duhalt Effet de la lumière sur l'accumulation de lipides neutres et la composition de la biomasse chez l'algue Botryococcus sudeticus (Chlorophyceae) , 1991 .

[136]  K. Kreuzberg Starch fermentation via a formate producing pathway in Chlamydomonas reinhardii, Chlorogonium elongatum and Chlorella fusca , 1984 .

[137]  T. Happe,et al.  Isolation and molecular characterization of the [Fe]-hydrogenase from the unicellular green alga Chlorella fusca. , 2002, Biochimica et biophysica acta.

[138]  R. Schulz,et al.  Inactivation and Reactivation of the Hydrogenases of the Green Algae Scenedesmus obliquus and Chlamydomonas reinhardtii , 1993 .

[139]  S. Miyachi,et al.  Purification and characterization of hydrogenase from the marine green alga, Chlorococcum littorale , 1999, FEBS letters.

[140]  K. Kindle High-frequency nuclear transformation of Chlamydomonas reinhardtii. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[141]  M. Ghirardi,et al.  Oxygen sensitivity of algal H2- production , 1997 .

[142]  K. Schulten,et al.  Finding gas diffusion pathways in proteins: application to O2 and H2 transport in CpI [FeFe]-hydrogenase and the role of packing defects. , 2005, Structure.

[143]  E. Greenbaum,et al.  Energetic efficiency of hydrogen photoevolution by algal water splitting. , 1988, Biophysical journal.

[144]  A. Kaminski,et al.  Hydrogenases in green algae: do they save the algae's life and solve our energy problems? , 2002, Trends in plant science.

[145]  H. GAFFRON,et al.  Reduction of Carbon Dioxide with Molecular Hydrogen in Green Algæ , 1939, Nature.

[146]  M. Teixeira,et al.  The three classes of hydrogenases from sulfate-reducing bacteria of the genus Desulfovibrio. , 1988, FEMS microbiology reviews.

[147]  Peter Graf,et al.  Addressing unknown constants and metabolic network behaviors through petascale computing: understanding H2 production in green algae , 2007 .

[148]  John R. Benemann,et al.  Dunaliella salina (Chlorophyta) with small chlorophyll antenna sizes exhibit higher photosynthetic productivities and photon use efficiencies than normally pigmented cells , 1998, Journal of Applied Phycology.

[149]  R. Thauer,et al.  Purification, properties and primary structure of H2-formingN5,N10-methylenetetrahydromethanopterin dehydrogenase fromMethanococcus thermolithotrophicus , 1996, Archives of Microbiology.

[150]  S. Purton,et al.  Playing tag with Chlamydomonas. , 1994, Trends in cell biology.

[151]  M. Ghirardi,et al.  A comparison of hydrogen photoproduction by sulfur-deprived Chlamydomonas reinhardtii under different growth conditions. , 2007, Journal of biotechnology.

[152]  Jack Rubin,et al.  FERMENTATIVE AND PHOTOCHEMICAL PRODUCTION OF HYDROGEN IN ALGAE , 1942, The Journal of general physiology.

[153]  S. Ragsdale Pyruvate ferredoxin oxidoreductase and its radical intermediate. , 2003, Chemical reviews.

[154]  T. Ikegami,et al.  NMR Study of the Electron Transfer Complex of Plant Ferredoxin and Sulfite Reductase , 2006, Journal of Biological Chemistry.

[155]  P. Roessler,et al.  Purification of Hydrogenase from Chlamydomonas reinhardtii. , 1984, Plant physiology.

[156]  A. Melis,et al.  Probing green algal hydrogen production. , 2002, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[157]  M. Ghirardi,et al.  The Effect of Sulfur Re-Addition on H2 Photoproduction by Sulfur-Deprived Green Algae , 2005, Photosynthesis Research.

[158]  T. Happe,et al.  Identification of a Cis-Acting Element Controlling Anaerobic Expression of the Hyda Gene from Chlamydomonas Reinhardtii , 2004 .

[159]  E. Duin,et al.  Infrared studies on the interaction of carbon monoxide with divalent nickel in hydrogenase from Chromatium vinosum. , 1994, Biochemistry.

[160]  A. Grossman,et al.  The regulation of photosynthetic electron transport during nutrient deprivation in Chlamydomonas reinhardtii. , 1998, Plant physiology.

[161]  R. Frank,et al.  14-3-3 Proteins Are Constituents of the Insoluble Glycoprotein Framework of the Chlamydomonas Cell Wall Article, publication date, and citation information can be found at www.plantcell.org/cgi/doi/10.1105/tpc.010611. , 2003, The Plant Cell Online.

[162]  A. Newton,et al.  SulP, a nuclear gene encoding a putative chloroplast-targeted sulfate permease in Chlamydomonas reinhardtii , 2003, Planta.

[163]  Murray Wolinsky,et al.  A power-law sensitivity analysis of the hydrogen-producing metabolic pathway in Chlamydomonas reinhardtii , 2002 .

[164]  A. Kaminski,et al.  Differential regulation of the Fe-hydrogenase during anaerobic adaptation in the green alga Chlamydomonas reinhardtii. , 2002, European journal of biochemistry.

[165]  J. Gaillard,et al.  Heterologous biosynthesis and characterization of the [2Fe-2S]-containing N-terminal domain of Clostridium pasteurianum hydrogenase. , 1998, Biochemistry.

[166]  A. Newton,et al.  Role of SulP, a nuclear-encoded chloroplast sulfate permease, in sulfate transport and H2evolution in Chlamydomonas reinhardtii , 2005, Photosynthesis Research.

[167]  Michael Seibert,et al.  HYDROGEN PRODUCTION BY PHOTOSYNTHETIC MICROORGANISMS , 2004 .

[168]  J. Broderick,et al.  Adenosylmethionine-dependent iron-sulfur enzymes: versatile clusters in a radical new role , 2001, JBIC Journal of Biological Inorganic Chemistry.

[169]  F. Rey,et al.  Redirection of Metabolism for Biological Hydrogen Production , 2007, Applied and Environmental Microbiology.

[170]  Arthur R. Grossman,et al.  Anaerobic Acclimation in Chlamydomonas reinhardtii , 2007, Journal of Biological Chemistry.

[171]  NifB-dependent in vitro synthesis of the iron-molybdenum cofactor of nitrogenase. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[172]  A. Melis Bioengineering of Green Algae to Enhance Photosynthesis and Hydrogen Production , 2006 .

[173]  A. Melis,et al.  Chloroplast sulfate transport in green algae – genes, proteins and effects , 2005, Photosynthesis Research.

[174]  N. Nakicenovic Carbon dioxide mitigation measures and options , 1993 .

[175]  M. Seibert,et al.  The Relationship between the Photosystem 2 Activity and Hydrogen Production in Sulfur Deprived Chlamydomonas reinhardtiiCells , 2001, Doklady Biochemistry and Biophysics.

[176]  A. Melis,et al.  Biochemistry of hydrogen metabolism in Chlamydomonas reinhardtii wild type and a Rubisco-less mutant , 2006 .

[177]  J. Wright,et al.  Hydrogen production by eukaryotic algae. , 1989, Biotechnology and bioengineering.

[178]  O. Fiehn,et al.  Metabolite Profiling of Chlamydomonas reinhardtii under Nutrient Deprivation1[OA] , 2005, Plant Physiology.

[179]  Jeff Shrager,et al.  Insights into the Survival of Chlamydomonas reinhardtii during Sulfur Starvation Based on Microarray Analysis of Gene Expression , 2004, Eukaryotic Cell.

[180]  C. Pickett,et al.  Chemistry and the hydrogenases. , 2003, Chemical Society reviews.

[181]  J. Fontecilla-Camps,et al.  Desulfovibrio desulfuricans iron hydrogenase: the structure shows unusual coordination to an active site Fe binuclear center. , 1999, Structure.

[182]  T. Buhrke,et al.  The role of the active site-coordinating cysteine residues in the maturation of the H2-sensing [NiFe] hydrogenase from Ralstonia eutropha H16 , 2004, Archives of Microbiology.

[183]  M. Ghirardi,et al.  Hydrogen production by photosynthetic green algae. , 2006, Indian journal of biochemistry & biophysics.

[184]  A. Grossman,et al.  Sulfur economy and cell wall biosynthesis during sulfur limitation of Chlamydomonas reinhardtii. , 2001, Plant physiology.

[185]  Michael Seibert,et al.  Prolongation of H2 photoproduction by immobilized, sulfur-limited Chlamydomonas reinhardtii cultures. , 2008, Journal of biotechnology.