Improved Monte Carlo Glauber predictions at present and future nuclear colliders

We present the results of an improved Monte Carlo Glauber (MCG) model of relevance for collisions involving nuclei at center-of-mass energies of the BNL Relativistic Heavy Ion Collider (sNN=0.2 TeV), CERN Large Hadron Collider (LHC) (sNN=2.76–8.8TeV), and proposed future hadron colliders (sNN≈10–63 TeV). The inelastic pp cross sections as a function of sNN are obtained from a precise data-driven parametrization that exploits the many available measurements at LHC collision energies. We describe the nuclear density of a lead nucleus with two separated two-parameter Fermi distributions for protons and neutrons to account for their different densities close to the nuclear periphery. Furthermore, we model the nucleon degrees of freedom inside the nucleus through a lattice with a minimum nodal separation, combined with a “recentering and reweighting” procedure, that overcomes some limitations of previous MCG approaches. The nuclear overlap function, number of participant nucleons and binary nucleon-nucleon collisions, participant eccentricity and triangularity, overlap area, and average path length are presented in intervals of percentile centrality for lead-lead (PbPb) and proton-lead (pPb) collisions at all collision energies. We demonstrate for collisions at sNN=5.02TeV that the central values of the Glauber quantities change by up to 7% in a few bins of reaction centrality, due to the improvements implemented, though typically they remain within the previously assigned systematic uncertainties, while their new associated uncertainties are generally smaller (mostly below 5%) at all centralities than for earlier calculations. Tables for all quantities versus centrality at present and foreseen collision energies involving Pb nuclei, as well as for collisions of XeXe at sNN=5.44TeV, and AuAu and CuCu at sNN=0.2TeV, are provided. The source code for the improved Monte Carlo Glauber model is made publicly available.

[1]  L. A. Granado Cardoso,et al.  Measurement of the inelastic pp cross-section at a centre-of-mass energy of 13 TeV , 2018, Journal of High Energy Physics.

[2]  V. M. Ghete,et al.  Measurement of the inelastic proton-proton cross section at $\sqrt{s}$ = 13 TeV , 2016 .

[3]  C. Loizides,et al.  Absence of jet quenching in peripheral nucleus–nucleus collisions , 2017, 1705.08856.

[4]  M. Hara,et al.  First Elastic Electron Scattering from ^{132}Xe at the SCRIT Facility. , 2017, Physical review letters.

[5]  S. De The effect of neutron skin on inclusive prompt photon production in Pb + Pb collisions at Large Hadron Collider energies , 2016, 1609.09608.

[6]  I. Helenius,et al.  Neutron-skin effect in direct-photon and charged-hadron production in Pb+Pb collisions at the LHC , 2016, The European physical journal. C, Particles and fields.

[7]  D. d’Enterria,et al.  Global properties of proton-proton collisions at s=100\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sqrt{\mathrm{s , 2016, Journal of High Energy Physics.

[8]  H. Haevermaet Measurement of the inelastic proton-proton cross section at √ s = 13 TeV The CMS Collaboration , 2016 .

[9]  Atlas Collaboration Measurement of the Inelastic Proton-Proton Cross Section at root s=13 TeV with the ATLAS Detector at the LHC , 2016, 1606.02625.

[10]  P. Antonioli,et al.  Heavy ions at the Future Circular Collider , 2016, 1605.01389.

[11]  D. Perepelitsa,et al.  Tests of constituent-quark generation methods which maintain both the nucleon center of mass and the desired radial distribution in Monte Carlo Glauber models , 2016, 1603.08836.

[12]  C. Loizides Glauber modeling of high-energy nuclear collisions at the subnucleon level , 2016, 1603.07375.

[13]  V. M. Ghete,et al.  Measurement of the inelastic cross section in proton–lead collisions at sNN=5.02TeV , 2015 .

[14]  H. Paukkunen Neutron skin and centrality classification in high-energy heavy-ion collisions at the LHC , 2015, 1503.02448.

[15]  J. A. Hernando Morata,et al.  Measurement of the inelastic pp cross-section at a centre-of-mass energy of s$$ \sqrt{s} $$ = 7 TeV , 2014, 1412.2500.

[16]  Q. Shou,et al.  Parameterization of Deformed Nuclei for Glauber Modeling in Relativistic Heavy Ion Collisions , 2014, 1409.8375.

[17]  J. G. Contreras,et al.  Centrality dependence of particle production in p -Pb collisions at s NN = 5 . 02 TeV , 2015 .

[18]  Shuang Li,et al.  Centrality dependence of particle production in p-Pb collisions at $\sqrt{s_{\rm NN} }$= 5.02 TeV , 2014 .

[19]  J. Abdallah,et al.  Measurement of the total cross section from elastic scattering in pp collisions at s=8 TeV with the ATLAS detector , 2014 .

[20]  J. G. Contreras,et al.  Measurement of visible cross sections in proton-lead collisions at √sNN = 5.02 TeV in van der Meer scans with the ALICE detector , 2014, 1405.1849.

[21]  F. Taylor,et al.  Measurement of the total cross section from elastic scattering in pp , 2014, 1408.5778.

[22]  P. Steinberg,et al.  Improved version of the PHOBOS Glauber Monte Carlo , 2014, 1408.2549.

[23]  M. Martinez,et al.  Neutron skin of (208)pb from coherent pion photoproduction. , 2013, Physical review letters.

[24]  Maciej Rybczyński,et al.  GLISSANDO 2: GLauber Initial-State Simulation AND mOre..., ver. 2 , 2013, Comput. Phys. Commun..

[25]  The ALICE collaboration Measurement of visible cross sections in proton-lead collisions at √sNN = 5.02 TeV in van der Meer scans with the ALICE detector , 2014 .

[26]  Avati,et al.  Luminosity-independent measurement of the proton-proton total cross section at √s=8 TeV. , 2013, Physical review letters.

[27]  Z. Włodarczyk,et al.  The nucleon–nucleon collision profile and cross section fluctuations , 2013, 1307.0636.

[28]  Dong Wang,et al.  Centrality determination of Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 2.76 TeV with ALICE , 2013, 1301.4361.

[29]  M. Alvioli,et al.  Color fluctuation effects in proton-nucleus collisions , 2013, 1301.0728.

[30]  J. G. Contreras,et al.  Measurement of inelastic, single- and double-diffraction cross sections in proton–proton collisions at the LHC with ALICE , 2012, The European physical journal. C, Particles and fields.

[31]  M. L. Knichel,et al.  Centrality determination of Pb-Pb collisions at √ s NN = 2 . 76 TeV with ALICE , 2013 .

[32]  I. Angeli,et al.  Table of experimental nuclear ground state charge radii: An update , 2013 .

[33]  P. Aspell,et al.  Luminosity-independent measurements of total, elastic and inelastic cross-sections at , 2013 .

[34]  N. T. Thao,et al.  Measurement of the proton-air cross section at √s=57 TeV with the Pierre Auger Observatory. , 2012, Physical review letters.

[35]  Dong Wang,et al.  Measurement of the Cross Section for Electromagnetic Dissociation with Neutron Emission in Pb-Pb Collisions at root s(NN)=2.76 TeV , 2012 .

[36]  M. Alvioli,et al.  Initial state anisotropies and their uncertainties in ultrarelativistic heavy-ion collisions from the Monte Carlo Glauber model , 2011, 1112.5306.

[37]  S. Lami,et al.  First measurement of the total proton-proton cross-section at the LHC energy of , 2011, 1110.1395.

[38]  M. L. Ferrer,et al.  Measurement of the inelastic proton–proton cross-section at √s=7 TeV with the ATLAS detector , 2011, Nature communications.

[39]  Torbjörn Sjöstrand,et al.  Multiparton interactions with an x-dependent proton size , 2011, 1101.5953.

[40]  D. Teaney,et al.  Triangularity and Dipole Asymmetry in Heavy Ion Collisions , 2010, 1010.1876.

[41]  M. Gyulassy,et al.  HIJING : A Monte Carlo model for multiple jet production in pp , p A , and A A collisions , 2011 .

[42]  G. Roland,et al.  Erratum: Collision-geometry fluctuations and triangular flow in heavy-ion collisions [Phys. Rev. C 81, 054905 (2010)] , 2010 .

[43]  Gunther Roland,et al.  Collision-geometry fluctuations and triangular flow in heavy-ion collisions , 2010, 1003.0194.

[44]  X. Vinas,et al.  Analysis of bulk and surface contributions in the neutron skin of nuclei , 2010, 1003.5225.

[45]  J. Jia,et al.  Influence of the nucleon-nucleon collision geometry on the determination of the nuclear modification factor for nucleon-nucleus and nucleus-nucleus collisions , 2009, 0907.4175.

[46]  M. Alvioli,et al.  A Monte Carlo generator of nucleon configurations in complex nuclei including nucleon–nucleon correlations , 2009, 0905.2670.

[47]  Y. Nara,et al.  Eccentricity fluctuation effects on elliptic flow in relativistic heavy ion collisions , 2009, 0904.4080.

[48]  Wojciech Broniowski,et al.  GLISSANDO: GLauber Initial-State Simulation AND mOre , 2007, Comput. Phys. Commun..

[49]  B. Alver,et al.  The PHOBOS Glauber Monte Carlo , 2008, 0805.4411.

[50]  S.Manly,et al.  Importance of correlations and fluctuations on the initial source eccentricity in high-energy nucleus-nucleus collisions , 2007, 0711.3724.

[51]  A. Dumitru,et al.  Centrality dependence of elliptic flow, the hydrodynamic limit, and the viscosity of hot QCD , 2007, 0704.3553.

[52]  B. A. Brown,et al.  Neutron density distributions from antiprotonic 208Pb and 209Bi atoms , 2007, nucl-ex/0702016.

[53]  F. Hartmann,et al.  Nuclear surface studies with antiprotonic atom X-rays , 2007, nucl-th/0702029.

[54]  Peter Steinberg,et al.  Glauber Modeling in High Energy Nuclear Collisions , 2007, nucl-ex/0701025.

[55]  C. Henderson,et al.  System size, energy, pseudorapidity, and centrality dependence of elliptic flow. , 2006, Physical review letters.

[56]  G. Paic,et al.  Leading-particle suppression in high energy nucleus-nucleus collisions , 2004, hep-ph/0406201.

[57]  J. Jia,et al.  Medium-induced jet absorption in relativistic heavy-ion collisions , 2003, nucl-th/0310044.

[58]  I. Angeli,et al.  A consistent set of nuclear rms charge radii: properties of the radius surface R(N,Z) ☆ , 2004 .

[59]  A. Drees,et al.  Medium induced jet absorption at RHIC , 2003 .

[60]  Peter J. Mohr,et al.  CODATA Recommended Values of the Fundamental Physical Constants (version 4.0) , 2003 .

[61]  Kiev,et al.  Benchmarks for the forward observables at RHIC, the Tevatron-run II, and the LHC. , 2002, Physical review letters.

[62]  B. Taylor,et al.  CODATA Recommended Values of the Fundamental Physical Constants: 2010 | NIST , 2005, 1203.5425.

[63]  Fons Rademakers,et al.  ROOT — An object oriented data analysis framework , 1997 .

[64]  C. Lourenço,et al.  A quantitative analysis of charmonium suppression in nuclear collisions , 1996, hep-ph/9612217.

[65]  Lukas A. Schaller,et al.  Nuclear ground state charge radii from electromagnetic interactions , 1995 .

[66]  Bamberger,et al.  Fermi National Accelerator Laboratory CDF Measurement of Small Angle Antiproton-Proton Elastic Scattering at 4 s = 546 and 1800 , 1998 .

[67]  M. Albrow,et al.  Measurement of the antiproton-proton total cross section at s =546 and 1800 GeV , 1994 .

[68]  Goodman,et al.  Measurement of rho, the ratio of the real to the imaginary part of the p-barp forward elastic-scattering amplitude, at sqrt s =1.8 TeV. , 1992, Physical review letters.

[69]  M. Gyulassy,et al.  HIGING: A Monte Carlo model for multiple jet production in pp, pA, and AA collisions. , 1991, Physical review. D, Particles and fields.

[70]  M. R. Mondardini,et al.  A luminosity-independent measurement of the pp total cross section at √s=1.8 TeV , 1990 .

[71]  C. Vries,et al.  Nuclear charge-density-distribution parameters from elastic electron scattering , 1987 .

[72]  G. J. Alner,et al.  Antiproton-proton cross sections at 200 and 900 GeV c.m. energy , 1986 .

[73]  C. Papanicolas,et al.  Electron scattering and nuclear structure , 1987 .

[74]  W. Czyz,et al.  Multiplicity distributions in nucleus-nucleus collisions at high energies , 1976 .

[75]  C. Vries,et al.  Nuclear charge and magnetization density distribution parameters from elastic electron scattering , 1974 .

[76]  R. Glauber,et al.  High-energy scattering of protons by nuclei , 1970 .

[77]  M. Froissart Asymptotic Behavior and Subtractions in the Mandelstam Representation , 1961 .