Validation of QTL mapping and transcriptome profiling for identification of candidate genes associated with nitrogen stress tolerance in sorghum

[1]  D. Jordan,et al.  Whole Genome Sequencing Reveals Potential New Targets for Improving Nitrogen Uptake and Utilization in Sorghum bicolor , 2016, Front. Plant Sci..

[2]  A. Good,et al.  Identification of Nitrogen Use Efficiency Genes in Barley: Searching for QTLs Controlling Complex Physiological Traits , 2016, Front. Plant Sci..

[3]  Yujiao Liu,et al.  Mapping and validation of major quantitative trait loci for kernel length in wild barley (Hordeum vulgare ssp. spontaneum) , 2016, BMC Genetics.

[4]  B. Liu,et al.  Identification and validation of QTLs controlling multiple traits in sorghum , 2016, Crop and Pasture Science.

[5]  Yan Xia,et al.  SorGSD: a sorghum genome SNP database , 2016, Biotechnology for Biofuels.

[6]  Leon Bieber,et al.  Sas System For Mixed Models , 2016 .

[7]  T. Clemente,et al.  Mapping QTLs and association of differentially expressed gene transcripts for multiple agronomic traits under different nitrogen levels in sorghum , 2016, BMC Plant Biology.

[8]  G. Burow,et al.  Transcriptome profiling and validation of gene based single nucleotide polymorphisms (SNPs) in sorghum genotypes with contrasting responses to cold stress , 2015, BMC Genomics.

[9]  A. Link,et al.  An adaptive classification model for peptide identification , 2015, BMC Genomics.

[10]  Fusuo Zhang,et al.  A genetic relationship between nitrogen use efficiency and seedling root traits in maize as revealed by QTL analysis , 2015, Journal of experimental botany.

[11]  J. Patil,et al.  Detection and validation of stay-green QTL in post-rainy sorghum involving widely adapted cultivar, M35-1 and a popular stay-green genotype B35 , 2014, BMC Genomics.

[12]  A. Duarte,et al.  Glutathione and proline can coordinately make plants withstand the joint attack of metal(loid) and salinity stresses , 2014, Front. Plant Sci..

[13]  K. Kazan,et al.  PHYTOCHROME AND FLOWERING TIME1/MEDIATOR25 Regulates Lateral Root Formation via Auxin Signaling in Arabidopsis1[C][W] , 2014, Plant Physiology.

[14]  Zhen Zhu,et al.  QTL mapping for seedling traits associated with low‐nitrogen tolerance using a set of advanced backcross introgression lines of rice , 2014 .

[15]  David Holding,et al.  Identification of differentially expressed genes between sorghum genotypes with contrasting nitrogen stress tolerance by genome-wide transcriptional profiling , 2014, BMC Genomics.

[16]  Jun Li,et al.  Whole-genome sequencing reveals untapped genetic potential in Africa’s indigenous cereal crop sorghum , 2013, Nature Communications.

[17]  Ying Zhang,et al.  New technologies reduce greenhouse gas emissions from nitrogenous fertilizer in China , 2013, Proceedings of the National Academy of Sciences.

[18]  W. Schmidt,et al.  PFT1, a transcriptional Mediator complex subunit, controls root hair differentiation through reactive oxygen species (ROS) distribution in Arabidopsis. , 2013, The New phytologist.

[19]  Ying Guo,et al.  QTL mapping for seedling traits under different nitrogen forms in wheat , 2013, Euphytica.

[20]  A. Good,et al.  Engineering nitrogen use efficient crop plants: the current status. , 2012, Plant biotechnology journal.

[21]  Qi Feng,et al.  dentification of QTLs for eight agronomi ally important traits using an ultr-hig-density map based on SNPs generated from high-throughput sequencing in sorghum under contrasting photoperiods , 2012 .

[22]  M. Matz,et al.  2b-RAD: a simple and flexible method for genome-wide genotyping , 2012, Nature Methods.

[23]  T. Takai,et al.  Quantitative trait locus analysis for days-to-heading and morphological traits in an RIL population derived from an extremely late flowering F1 hybrid of sorghum , 2012, Euphytica.

[24]  Yunhai Li,et al.  The Mediator complex subunit 8 regulates organ size in Arabidopsis thaliana , 2012, Plant signaling & behavior.

[25]  M. Rockman THE QTN PROGRAM AND THE ALLELES THAT MATTER FOR EVOLUTION: ALL THAT'S GOLD DOES NOT GLITTER , 2012, Evolution; international journal of organic evolution.

[26]  K. Pillen,et al.  Detection of exotic QTLs controlling nitrogen stress tolerance among wild barley introgression lines , 2012, Euphytica.

[27]  M. Thomson,et al.  Identification and Validation of Quantitative Trait Loci for Agronomic Traits in Advanced Backcross Breeding Lines Derived from Oryza rufipogon × Oryza sativa Cultivar MR219 , 2012, Plant Molecular Biology Reporter.

[28]  G. Hammer,et al.  Decrease in sorghum grain yield due to the dw3 dwarfing gene is caused by reduction in shoot biomass , 2011 .

[29]  Marcela K. Monaco,et al.  Functional annotation of the transcriptome of Sorghum bicolor in response to osmotic stress and abscisic acid , 2011, BMC Genomics.

[30]  Yan'an Guan,et al.  QTL mapping of bio-energy related traits in Sorghum , 2011, Euphytica.

[31]  Xianran Li,et al.  Single-nucleotide polymorphism discovery by high-throughput sequencing in sorghum , 2011, BMC Genomics.

[32]  M. Blaxter,et al.  Genome-wide genetic marker discovery and genotyping using next-generation sequencing , 2011, Nature Reviews Genetics.

[33]  Robert J. Elshire,et al.  A Robust, Simple Genotyping-by-Sequencing (GBS) Approach for High Diversity Species , 2011, PloS one.

[34]  D. Jordan,et al.  Integrating sorghum whole genome sequence information with a compendium of sorghum QTL studies reveals uneven distribution of QTL and of gene-rich regions with significant implications for crop improvement , 2011, Theoretical and Applied Genetics.

[35]  Florent Murat,et al.  Cross-genome map based dissection of a nitrogen use efficiency ortho-metaQTL in bread wheat unravels concerted cereal genome evolution. , 2011, The Plant journal : for cell and molecular biology.

[36]  R. Gutiérrez,et al.  A holistic view of nitrogen acquisition in plants. , 2011, Journal of experimental botany.

[37]  C. Masclaux-Daubresse,et al.  Exploring nitrogen remobilization for seed filling using natural variation in Arabidopsis thaliana , 2011, Journal of experimental botany.

[38]  Zhao-Bang Zeng,et al.  WINDOWS QTL Cartographer , 2011 .

[39]  Zhao-Bang Zeng,et al.  Windows QTL Cartographer 2·5 , 2011 .

[40]  S. Mohanty,et al.  Support for international agricultural research: current status and future challenges. , 2010, New biotechnology.

[41]  Ashutosh Kumar Singh,et al.  Combining QTL mapping and transcriptome profiling of bulked RILs for identification of functional polymorphism for salt tolerance genes in rice (Oryzasativa L.) , 2010, Molecular Genetics and Genomics.

[42]  J. Holland,et al.  Estimating and Interpreting Heritability for Plant Breeding: An Update , 2010 .

[43]  C. Masclaux-Daubresse,et al.  Natural variation of nitrate uptake and nitrogen use efficiency in Arabidopsis thaliana cultivated with limiting and ample nitrogen supply. , 2010, Journal of experimental botany.

[44]  W. Friedt,et al.  Genetic mapping of QTLs for sugar-related traits in a RIL population of Sorghum bicolor L. Moench , 2010, Theoretical and Applied Genetics.

[45]  P. Vitousek,et al.  Significant Acidification in Major Chinese Croplands , 2010, Science.

[46]  T. Zhu,et al.  Increased nitrogen-use efficiency in transgenic rice plants over-expressing a nitrogen-responsive early nodulin gene identified from rice expression profiling. , 2009, Plant, cell & environment.

[47]  R. Mulvaney,et al.  Synthetic nitrogen fertilizers deplete soil nitrogen: a global dilemma for sustainable cereal production. , 2009, Journal of environmental quality.

[48]  C. Ravel,et al.  A quantitative genetic study for elucidating the contribution of glutamine synthetase, glutamate dehydrogenase and other nitrogen-related physiological traits to the agronomic performance of common wheat , 2009, Theoretical and Applied Genetics.

[49]  Jiankang Wang Inclusive composite interval mapping of quantitative trait genes. , 2009 .

[50]  F. Hochholdinger,et al.  Genetic and genomic dissection of maize root development and architecture. , 2009, Current opinion in plant biology.

[51]  Xin-ping Chen,et al.  Reducing environmental risk by improving N management in intensive Chinese agricultural systems , 2009, Proceedings of the National Academy of Sciences.

[52]  E. Pennisi,et al.  How Sorghum Withstands Heat and Drought , 2009, Science.

[53]  Takuji Sasaki,et al.  Plant genomics: Sorghum in sequence , 2009, Nature.

[54]  Mihaela M. Martis,et al.  The Sorghum bicolor genome and the diversification of grasses , 2009, Nature.

[55]  N. Seetharama,et al.  Exploration and mapping of microsatellite markers from subtracted drought stress ESTs in Sorghum bicolor (L.) Moench , 2009, Theoretical and Applied Genetics.

[56]  A. Kilian,et al.  A consensus genetic map of sorghum that integrates multiple component maps and high-throughput Diversity Array Technology (DArT) markers , 2009, BMC Plant Biology.

[57]  S. Kresovich,et al.  Genetic Improvement of Sorghum as a Biofuel Feedstock: I. QTL for Stem Sugar and Grain Nonstructural Carbohydrates , 2008 .

[58]  Nancy F. Hansen,et al.  Accurate Whole Human Genome Sequencing using Reversible Terminator Chemistry , 2008, Nature.

[59]  Stephen Kresovich,et al.  Efficient Mapping of Plant Height Quantitative Trait Loci in a Sorghum Association Population With Introgressed Dwarfing Genes , 2008, Genetics.

[60]  F. Tardieu,et al.  ’ s Choice Series on the Next Generation of Biotech Crops Quantitative Trait Loci and Crop Performance under Abiotic Stress : Where Do We Stand ? , 2008 .

[61]  A. Paterson Genomics of Sorghum , 2008, International journal of plant genomics.

[62]  S. Chapman,et al.  Identification of QTL for sugar-related traits in a sweet × grain sorghum (Sorghum bicolor L. Moench) recombinant inbred population , 2008, Molecular Breeding.

[63]  D. Jordan,et al.  The Effect of Tropical Sorghum Conversion and Inbred Development on Genome Diversity as Revealed by High-Resolution Genotyping , 2008 .

[64]  F. Mekbib Infra-specific folk taxonomy in sorghum (Sorghum bicolor (L.) Moench) in Ethiopia: folk nomenclature, classification, and criteria , 2007, Journal of ethnobiology and ethnomedicine.

[65]  Jürg M. Blumenthal,et al.  Designing sorghum as a dedicated bioenergy feedstock , 2007 .

[66]  B. Ney,et al.  The challenge of improving nitrogen use efficiency in crop plants: towards a more central role for genetic variability and quantitative genetics within integrated approaches. , 2007, Journal of experimental botany.

[67]  M. Brancourt-Hulmel,et al.  Using genotype × nitrogen interaction variables to evaluate the QTL involved in wheat tolerance to nitrogen constraints , 2007, Theoretical and Applied Genetics.

[68]  J. Holland,et al.  Genetic architecture of complex traits in plants. , 2007, Current opinion in plant biology.

[69]  F. Below,et al.  Divergent selection for grain protein affects nitrogen use in maize hybrids , 2007 .

[70]  S. Bernard,et al.  The genetics of nitrogen use in hexaploid wheat: N utilisation, development and yield , 2007, Theoretical and Applied Genetics.

[71]  S. Kresovich,et al.  Inheritance of inflorescence architecture in sorghum , 2006, Theoretical and Applied Genetics.

[72]  W. Frommer,et al.  Arabidopsis LHT1 Is a High-Affinity Transporter for Cellular Amino Acid Uptake in Both Root Epidermis and Leaf Mesophyll[W] , 2006, The Plant Cell Online.

[73]  D. An,et al.  Mapping QTLs for nitrogen uptake in relation to the early growth of wheat (Triticum aestivum L.) , 2006, Plant and Soil.

[74]  G. E. Hart,et al.  Alignment of genetic maps and QTLs between inter- and intra-specific sorghum populations , 2006, Theoretical and Applied Genetics.

[75]  Xianghua Li,et al.  Expression Profiles of 10,422 Genes at Early Stage of Low Nitrogen Stress in Rice Assayed using a cDNA Microarray , 2006, Plant Molecular Biology.

[76]  Hua Yan,et al.  QTLs for low nitrogen tolerance at seedling stage identified using a recombinant inbred line population derived from an elite rice hybrid , 2005, Theoretical and Applied Genetics.

[77]  Joaquín Dopazo,et al.  Discovering molecular functions significantly related to phenotypes by combining gene expression data and biological information , 2005, Bioinform..

[78]  H. Rolletschek,et al.  Ectopic Expression of an Amino Acid Transporter (VfAAP1) in Seeds of Vicia narbonensis and Pea Increases Storage Proteins1 , 2005, Plant Physiology.

[79]  E. Pang,et al.  An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: The basic concepts , 2005, Euphytica.

[80]  C. Engels,et al.  Grain yield and kernel weight of two maize genotypes differing in nitrogen use efficiency at various levels of nitrogen and carbohydrate availability during flowering and grain filling , 2005, Plant and Soil.

[81]  A. Good,et al.  Can less yield more? Is reducing nutrient input into the environment compatible with maintaining crop production? , 2004, Trends in plant science.

[82]  B. Hirel,et al.  An approach to the genetics of nitrogen use efficiency in maize. , 2004, Journal of experimental botany.

[83]  C. Dangaria,et al.  Grain Yield in Pearl Millet in Relation to Source Size and Proximity to Sink , 2003, Photosynthetica.

[84]  J. Li,et al.  Identification of QTLs affecting traits of agronomic importance in a recombinant inbred population derived from a subspecific rice cross , 1996, Theoretical and Applied Genetics.

[85]  M. G. Pereira,et al.  Identification of genomic regions affecting plant height in sorghum and maize , 1995, Theoretical and Applied Genetics.

[86]  J. Maranville,et al.  Physiological adaptations for nitrogen use efficiency in sorghum† , 2004, Plant and Soil.

[87]  H. Agrama,et al.  Identification of quantitative trait loci for nitrogen use efficiency in maize , 2004, Molecular breeding.

[88]  Gurmukh S Johal,et al.  Loss of an MDR Transporter in Compact Stalks of Maize br2 and Sorghum dw3 Mutants , 2003, Science.

[89]  A. Fischer,et al.  Mapping of QTL associated with nitrogen storage and remobilization in barley (Hordeum vulgare L.) leaves. , 2003, Journal of experimental botany.

[90]  O. Loudet,et al.  Quantitative Trait Loci Analysis of Nitrogen Use Efficiency in Arabidopsis , 2003, Plant Physiology.

[91]  N. Seetharama,et al.  QTL mapping of stay-green in two sorghum recombinant inbred populations , 2002, Theoretical and Applied Genetics.

[92]  Barry E. Smith,et al.  Nitrogenase Reveals Its Inner Secrets , 2002, Science.

[93]  L. Watson,et al.  Ancestors of white clover (Trifolium repens L.), as revealed by isozyme polymorphisms , 2002, Theoretical and Applied Genetics.

[94]  M. Murray,et al.  All that's gold does not glitter , 2002 .

[95]  R. Voorrips MapChart: software for the graphical presentation of linkage maps and QTLs. , 2002, The Journal of heredity.

[96]  D. Lammer,et al.  Perennial wheat: The development of a sustainable cropping system for the U.S. Pacific Northwest , 2001 .

[97]  P. Langridge,et al.  Trends in genetic and genome analyses in wheat: a review , 2001 .

[98]  M. Yano,et al.  Mapping of QTLs associated with cytosolic glutamine synthetase and NADH-glutamate synthase in rice (Oryza sativa L.). , 2001, Journal of experimental botany.

[99]  D. Sandhu,et al.  Identification and physical localization of useful genes and markers to a major gene-rich region on wheat group 1S chromosomes. , 2001, Genetics.

[100]  D. Butler,et al.  Identification of genomic regions associated with stay green in sorghum by testing RILs in multiple environments , 2000, Theoretical and Applied Genetics.

[101]  D. Beghin,et al.  Genetic differences for nitrogen uptake and nitrogen utilisation efficiencies in winter wheat. , 2000 .

[102]  O. Crasta,et al.  Mapping of post-flowering drought resistance traits in grain sorghum: association between QTLs influencing premature senescence and maturity , 1999, Molecular and General Genetics MGG.

[103]  P. Waggoner,et al.  Nitrogen fertilizer: retrospect and prospect. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[104]  A. L. Garside,et al.  Season, nitrogen rate, and plant type affect nitrogen uptake and nitrogen use efficiency in rice , 1998 .

[105]  D. Bush,et al.  LHT1, A Lysine- and Histidine-Specific Amino Acid Transporter in Arabidopsis , 1997, Plant physiology.

[106]  A. Paterson,et al.  Comparative analysis of QTLs affecting plant height and maturity across the Poaceae, in reference to an interspecific sorghum population. , 1995, Genetics.

[107]  H. Marschner Mineral Nutrition of Higher Plants, Second Edition , 1995 .

[108]  H. Marschner Preface to Second Edition , 1995 .

[109]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[110]  R. Doerge,et al.  Empirical threshold values for quantitative trait mapping. , 1994, Genetics.

[111]  Matthijs Tollenaar,et al.  N uptake, N partitioning, and photosynthetic N-use efficiency of an old and a new maize hybrid , 1994 .

[112]  J. Maranville,et al.  Evaluation of Alternative Screening Criteria for Selecting Nitrogen-Use Efficient Genotypes in Sorghum , 1992 .

[113]  W. Jackson,et al.  Analysis and Interpretation of Factors Which Contribute to Efficiency of Nitrogen Utilization1 , 1982 .

[114]  H. Doggett Yield Increase from Sorghum Hybrids , 1967, Nature.

[115]  A. J. Casady Effect of a Single Height Gene (Dw3) of Sorghum vulgare Pers. on Certain Culm and Leaf Blade Characteristics 1 , 1967 .

[116]  C. Brim A Modified Pedigree Method of Selection in Soybeans 1 , 1966 .

[117]  J. E. Freeman,et al.  Effects of Height Mutations on Grain Yield in Sorghum 1 , 1965 .