MgO:PPLN frequency doubling optical chips for green light generation: from lab research to mass production

Laser displays require red, green and blue (RGB) laser sources each with a low-cost, a high wall-plug efficiency, and a small size. However, semiconductor chips that directly emit green light with sufficient power and efficiency are not currently available on the market. A practical solution to the "green" bottleneck is to employ diode pumped solid state laser (DPSSL) technology, in which a frequency doubling crystal is used. In this paper, recent progress of MgO doped periodically poled lithium niobate (MgO:PPLN) frequency doubling optical chips will be presented. It is shown that MgO:PPLN can satisfy all of the requirements for laser displays and is ready for mass production.

[1]  P. Franken,et al.  Optical Harmonics and Nonlinear Phenomena , 1963 .

[2]  R. C. Miller,et al.  Quantitative Studies of Optical Harmonic Generation in CdS, BaTiO 3 , and KH 2 PO 4 Type Crystals , 1963 .

[3]  N. Bloembergen,et al.  NONLINEAR OPTICAL PROPERTIES OF PERIODIC LAMINAR STRUCTURES , 1970 .

[4]  A. Yariv,et al.  Phase matching by periodic modulation of the nonlinear optical properties , 1972 .

[5]  J. McMullen Optical parametric interactions in isotropic materials using a phase‐corrected stack of nonlinear dielectric plates , 1975 .

[6]  S. Miyazawa Ferroelectric domain inversion in Ti‐diffused LiNbO3 optical waveguide , 1979 .

[7]  M. Fejer,et al.  Laser-heated miniature pedestal growth apparatus for single-crystal optical fibers , 1984 .

[8]  P. Townsend,et al.  A method of poling LiNbO3 and LiTaO3 below Tc , 1986 .

[9]  F. Laurell,et al.  Blue light generated by frequency doubling of laser diode light in a lithium niobate channel waveguide , 1989, IEEE Photonics Technology Letters.

[10]  M. Fejer,et al.  Second-harmonic generation of green light in periodically poled planar lithium niobate waveguide , 1989 .

[11]  W. J. Kozlovsky,et al.  Blue light generation by frequency doubling in periodically poled lithium niobate channel waveguide , 1989 .

[12]  M. Fejer,et al.  Quasi‐phase‐matched second‐harmonic generation of blue light in periodically poled LiNbO3 , 1990 .

[13]  P. Townsend,et al.  Fabrication of domain reversed gratings for SHG in LiNbO/sub 3/ by electron beam bombardment , 1990 .

[14]  N. Bloembergen,et al.  Interactions between light waves in a nonlinear dielectric , 1962 .

[15]  M. Fejer,et al.  Periodically poled LiNbO3 for high‐efficiency second‐harmonic generation , 1991 .

[16]  M. Yamada,et al.  First‐order quasi‐phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second‐harmonic generation , 1993 .

[17]  A. Harada,et al.  Bulk periodically poled MgO‐LiNbO3 by corona discharge method , 1996 .

[18]  M. Fujimura,et al.  Fabrication of domain-inverted gratings in MgO:LiNbO/sub 3/ by applying voltage under ultraviolet irradiation through photomask at room temperature , 2003 .

[19]  V. Dierolf,et al.  Direct-write method for domain inversion patterns in LiNbO3 , 2004 .

[20]  T. Taira,et al.  High-energy quasi-phase-matched optical parametric oscillation in a periodically poled MgO:LiNbO3 device with a 5 mm x 5 mm aperture. , 2005, Optics letters.