Nonlinear optimization methods applied to magnetic actuators design
暂无分享,去创建一个
J.-L. Coulomb | R. R. Saldanha | R. R. Saldanha | S. Pelissier | K. Kadded | Y. P. Yonnet | J. Coulomb | K. Kadded | Serge Pelissier
[1] M. J. D. Powell,et al. How bad are the BFGS and DFP methods when the objective function is quadratic? , 1986, Math. Program..
[2] K. Svanberg. The method of moving asymptotes—a new method for structural optimization , 1987 .
[3] F. Moon,et al. Magneto-Solid Mechanics , 1986 .
[4] Jean-Paul Yonnet,et al. Optimization of a linear permanent magnet actuator , 1991 .
[5] Ashok Dhondu Belegundu,et al. A Study of Mathematical Programming Methods for Structural Optimization , 1985 .
[6] Francesco Trevisan,et al. A methodological analysis of different formulations for solving inverse electromagnetic problems , 1990 .
[7] R. R. Saldanha,et al. A dual method for constrained optimization design in magnetostatic problems , 1991 .
[8] Rodney R. Saldanha,et al. Inverse problem methodology and finite elements in the identification of cracks, sources, materials, and their geometry in inaccessible locations , 1991 .
[9] K. Svanberg,et al. An algorithm for optimum structural design using duality , 1982 .
[10] P. Biringer,et al. A proposal for a finite-element force approximation of an automotive magnetic actuator , 1990 .
[11] B. N. Pshenichnyi. Algorithms for general mathematical programming problems , 1970 .
[12] B. P. Lequesne. Finite-element analysis of a constant-force solenoid for fluid flow control , 1988 .
[13] Raphael T. Haftka,et al. Applications of a Quadratic Extended Interior for Structural Optimization Penalty Function , 1976 .