On Partial Well-Order for Monotone Grid Classes of Permutations

A monotone grid class is a permutation class (i.e., a downset of permutations under the containment order) defined by local monotonicity conditions. We give a simplified proof of a result of Murphy and Vatter that monotone grid classes of forests are partially well-ordered.

[1]  Sergi Elizalde,et al.  The X-Class and Almost-Increasing Permutations , 2007, 0710.5168.

[2]  Vincent Vatter Small permutation classes , 2007, 0712.4006.

[3]  Vincent Vatter,et al.  Profile Classes and Partial Well-Order for Permutations , 2002, Electron. J. Comb..

[4]  Cheryl Grood,et al.  A Specht Module Analog for the Rook Monoid , 2001, Electron. J. Comb..

[5]  Vincent Vatter,et al.  On Points Drawn from a Circle , 2011, Electron. J. Comb..

[6]  Vincent Vatter,et al.  Grid Classes and the Fibonacci Dichotomy for Restricted Permutations , 2006, Electron. J. Comb..

[7]  Nikola Ruskuc,et al.  Regular closed sets of permutations , 2003, Theor. Comput. Sci..

[8]  Robert Brignall,et al.  Grid classes and partial well order , 2009, J. Comb. Theory, Ser. A.

[9]  Graham Higman,et al.  Ordering by Divisibility in Abstract Algebras , 1952 .