Existence of a Solution and Variational Principles for Vector Equilibrium Problems

[1]  Giles Auchmuty Variational principles for variational inequalities , 1989 .

[2]  Jen-Chih Yao,et al.  The Existence of Nonlinear Inequalities , 1999 .

[3]  Jen-Chih Yao,et al.  Characterizations of Solutions for Vector Equilibrium Problems , 2002 .

[4]  Tan Nguyen Xuan,et al.  On the existence of equilibrium points of vector functions , 1998 .

[5]  Zaki Chbani,et al.  Recession methods for equilibrium problems and applications to variational and hemivariational inequalities , 1998 .

[6]  Donald W. Hearn,et al.  The gap function of a convex program , 1982, Operations Research Letters.

[7]  I. V. Konnov A general approach to finding stationary points and the solution of related problems , 1996 .

[8]  Bittner. Leonhard,et al.  Optimal control for dynamic versions of the leontief and other matrix models , 2001 .

[9]  W. Oettli,et al.  From optimization and variational inequalities to equilibrium problems , 1994 .

[10]  Monica Bianchi,et al.  Generalized monotone bifunctions and equilibrium problems , 1996 .

[11]  Werner Oettli,et al.  Generalized vectorial equilibria and generalized monotonicity , 1998 .

[12]  S. Schaible,et al.  Vector Equilibrium Problems with Generalized Monotone Bifunctions , 1997 .

[13]  Z. Chbani,et al.  Equilibrium problems and noncoercive variational inequalities , 2001 .

[14]  Qamrul Hasan Ansari,et al.  A generalization of vectorial equilibria , 1997, Math. Methods Oper. Res..

[15]  K. Fan A generalization of Tychonoff's fixed point theorem , 1961 .

[16]  W. Oettli A remark on vector-valued equilibria and generalized monotonicity , 1997 .

[17]  A. Auslender Optimisation : méthodes numériques , 1976 .

[18]  Xiaoqi Yang,et al.  On Gap Functions for Vector Variational Inequalities , 2000 .

[19]  J. Aubin,et al.  L'analyse non linéaire et ses motivations économiques , 1984 .

[20]  H. W. Corley,et al.  Optimality conditions for maximizations of set-valued functions , 1988 .

[21]  Guang-Ya Chen,et al.  Lagrangian Multipliers, Saddle Points, and Duality in Vector Optimization of Set-Valued Maps☆☆☆ , 1997 .

[22]  Nicolas Hadjisavvas,et al.  Quasimonotonicity and Pseudomonotonicity in Variational Inequalities and Equilibrium Problems , 1998 .

[23]  D. Kinderlehrer,et al.  An introduction to variational inequalities and their applications , 1980 .

[24]  G. Yuan,et al.  Generalized variational inequalitites and its applications , 1997 .

[25]  Q. Ansari VECTOR EQUILIBRIUM PROBLEMS AND VECTOR VARIATIONAL INEQUALITIES , 2000 .

[26]  George Xian-Zhi Yuan,et al.  KKM Theory and Applications in Nonlinear Analysis , 1999 .

[27]  Vaithilingam Jeyakumar,et al.  A Solvability Theorem for a Class of Quasiconvex Mappings with Applications to Optimization , 1993 .

[28]  Siegfried Schaible,et al.  From Scalar to Vector Equilibrium Problems in the Quasimonotone Case , 1998 .

[29]  Anatoly Antipin The convergence of proximal methods to fixed points of extremal mappings and estimates of their rate of convergence , 1995 .

[30]  H. W. Corley,et al.  Existence and Lagrangian duality for maximizations of set-valued functions , 1987 .

[31]  T. Tanaka,et al.  Generalized quasiconvexities, cone saddle points, and minimax theorem for vector-valued functions , 1994 .

[32]  Lai-Jiu Lin Optimization of Set-Valued Functions , 1994 .

[33]  Z. Chbani,et al.  Equilibrium Problems with Generalized Monotone Bifunctions and Applications to Variational Inequalities , 2000 .