Record value based on intuitionistic fuzzy random variables

ABSTRACT This paper extends some basic concepts associated to record value based on intuitionistic fuzzy random variables. In this approach, αβ-values of intuituinistic fuzzy numbers are employed to construct intuitionistic fuzzy cumulative distribution function and its common estimator, an extended entropy and its estimator, intuitionistic fuzzy (upper) record value and its common estimator. Main property of the proposed concepts include large sample properties which are investigated in the space of intuitionistic fuzzy numbers. Some numerical examples are also illustrated to clarify the concepts and methods.

[1]  James J. Buckley,et al.  Fuzzy regression using least absolute deviation estimators , 2007, Soft Comput..

[2]  Y. Cen,et al.  Fuzzy quality and analysis on fuzzy probability , 1996 .

[3]  Ning Wang,et al.  Fuzzy nonparametric regression based on local linear smoothing technique , 2007, Inf. Sci..

[4]  Hsien-Chung Wu,et al.  Statistical hypotheses testing for fuzzy data , 2005, Inf. Sci..

[5]  Ranjit Biswas,et al.  An application of intuitionistic fuzzy sets in medical diagnosis , 2001, Fuzzy Sets Syst..

[6]  Hamid Reza Karimi,et al.  Reliable Output Feedback Control of Discrete-Time Fuzzy Affine Systems With Actuator Faults , 2017, IEEE Transactions on Circuits and Systems I: Regular Papers.

[7]  Ana Colubi,et al.  Bootstrap approach to the multi-sample test of means with imprecise data , 2006, Comput. Stat. Data Anal..

[8]  Kwang Hyung Lee,et al.  First Course on Fuzzy Theory and Applications , 2005, Advances in Soft Computing.

[9]  Chang-Chun Tsai,et al.  Measuring process capability index Cpk with fuzzy data , 2006 .

[10]  Shyi-Ming Chen,et al.  Handling multicriteria fuzzy decision-making problems based on vague set theory , 1994 .

[11]  Huibert Kwakernaak,et al.  Fuzzy random variables--II. Algorithms and examples for the discrete case , 1979, Inf. Sci..

[12]  Cengiz Kahraman,et al.  Type-2 fuzzy process capability indices for non-normal processes , 2014, J. Intell. Fuzzy Syst..

[13]  Jianbin Qiu,et al.  Mode-dependent nonrational output feedback control for continuous-time semi-Markovian jump systems with time-varying delay , 2015 .

[14]  Gholamreza Hesamian,et al.  Fuzzy empirical distribution function: Properties and application , 2013 .

[15]  Cen Yongting,et al.  Fuzzy quality and analysis on fuzzy probability , 1996, Fuzzy Sets Syst..

[16]  Yunmei Chen,et al.  Cumulative residual entropy: a new measure of information , 2004, IEEE Transactions on Information Theory.

[17]  Phil Diamond,et al.  Fuzzy least squares , 1988, Inf. Sci..

[18]  Ram R. Bishu,et al.  Evaluation of fuzzy linear regression models by comparing membership functions , 1998, Fuzzy Sets Syst..

[19]  Majid Chahkandi,et al.  Fuzzy record values , 2017, Soft Comput..

[20]  Thierry Denoeux,et al.  Nonparametric rank-based statistics and significance tests for fuzzy data , 2005, Fuzzy Sets Syst..

[21]  Krassimir T. Atanassov,et al.  Intuitionistic fuzzy sets , 1986 .

[22]  R. Viertl Statistical Methods for Fuzzy Data , 2011 .

[23]  James J. Buckley Fuzzy Probability and Statistics (Studies in Fuzziness and Soft Computing) , 2006 .

[24]  Jianbin Qiu,et al.  Approaches to T–S Fuzzy-Affine-Model-Based Reliable Output Feedback Control for Nonlinear Itô Stochastic Systems , 2017, IEEE Transactions on Fuzzy Systems.

[25]  Reinhard Viertl,et al.  Statistical Methods for Fuzzy Data: Viertl/Statistical Methods for Fuzzy Data , 2011 .

[26]  Hong Tau Lee,et al.  Cpk index estimation using fuzzy numbers , 2001, Eur. J. Oper. Res..

[27]  D. Ralescu,et al.  Statistical Modeling, Analysis and Management of Fuzzy Data , 2001 .

[28]  Mohammad Ghasem Akbari,et al.  Linear Model With Exact Inputs and Interval-Valued Fuzzy Outputs , 2018, IEEE Transactions on Fuzzy Systems.

[29]  R. Kruse,et al.  Statistics with vague data , 1987 .

[30]  L.-H. Chen,et al.  A Mathematical Programming Method for Formulating a Fuzzy Regression Model Based on Distance Criterion , 2007, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[31]  Bernhard F. Arnold,et al.  An approach to fuzzy hypothesis testing , 1996 .

[32]  Przemysław Grzegorzewski Statistical inference about the median from vague data , 1998 .

[33]  Janusz Kacprzyk,et al.  Using intuitionistic fuzzy sets in group decision making , 2002 .

[34]  Yanlong Cao,et al.  Multivariate process capability evaluation of cloud manufacturing resource based on intuitionistic fuzzy set , 2015, The International Journal of Advanced Manufacturing Technology.

[35]  Robert LIN,et al.  NOTE ON FUZZY SETS , 2014 .

[36]  Bahram Sadeghpour Gildeh,et al.  Fuzzy Tolerance Region and Process Capability Analysis , 2012, SOCO 2012.

[37]  Shih-Pin Chen,et al.  A variable spread fuzzy linear regression model with higher explanatory power and forecasting accuracy , 2008, Inf. Sci..

[38]  Seyed Mahmoud Taheri,et al.  Least-Squares Regression Based on Atanassov's Intuitionistic Fuzzy Inputs–Outputs and Atanassov's Intuitionistic Fuzzy Parameters , 2015, IEEE Transactions on Fuzzy Systems.

[39]  Olga Poleshchuk,et al.  A Fuzzy Nonlinear Regression Model for Interval Type-2 Fuzzy Sets , 2014 .

[40]  O. Hryniewicz Goodman-Kruskal γ measure of dependence for fuzzy ordered categorical data , 2006 .

[41]  Przemyslaw Grzegorzewski,et al.  Testing statistical hypotheses with vague data , 2000, Fuzzy Sets Syst..

[42]  K. Atanassov New operations defined over the intuitionistic fuzzy sets , 1994 .

[43]  Hamid Reza Karimi,et al.  model reduction for continuous-time Markovian jump systems with incomplete statistics of mode information , 2014, Int. J. Syst. Sci..

[44]  Huibert Kwakernaak,et al.  Fuzzy random variables - I. definitions and theorems , 1978, Inf. Sci..

[45]  Cengiz Kahraman,et al.  Fuzzy process capability analyses: An application to teaching processes , 2008, J. Intell. Fuzzy Syst..