A lightning parameterization for numerical cloud models

Abstract A new lightning parameterization has been developed to enable cloud models to simulate the location and structure of individual lightning flashes more realistically. To do this, three aspects of previous parameterizations have been modified: 1) To account for subgrid-scale variations, the initiation point is chosen randomly from among grid points at which the electric field magnitude is above a threshold value, instead of being assigned always to the grid point having the maximum electric field magnitude. 2) The threshold value for initiation can either be constant, as in previous parameterizations, or can vary with height to allow different flash initiation hypotheses to be tested. 3) Instead of stopping at larger ambient electric field magnitudes, extensive flash development can continue in regions having a weak ambient electric field but a substantial charge density. This behavior is based on lightning observations and conceptual models of lightning physics. However, like previous parameteriza...

[1]  P. Laroche,et al.  NO signatures from lightning flashes , 1999 .

[2]  Vernon Cooray,et al.  Predicting the spatial and temporal variation of the electromagnetic fields, currents, and speeds of subsequent return strokes , 1998 .

[3]  V. Mazur,et al.  Model of electric charges in thunderstorms and associated lightning , 1998 .

[4]  V. Rakov,et al.  New insights into lightning processes gained from triggered‐lightning experiments in Florida and Alabama , 1998 .

[5]  Erik N. Rasmussen,et al.  Toward Improving Microphysical Parameterizations of Conversion Processes , 1997 .

[6]  Xuan-Min Shao,et al.  The spatial and temporal development of intracloud lightning , 1996 .

[7]  B. Ridley,et al.  On the production of active nitrogen by thunderstorms over , 1996 .

[8]  M. Baker,et al.  A one‐dimensional lightning parameterization , 1996 .

[9]  P. Krehbiel,et al.  The use of dual channel circular-polarization radar observations for remotely sensing storm electrification , 1996 .

[10]  Hugh J. Christian,et al.  A computational study of the relationships linking lightning frequency and other thundercloud parameters , 1995 .

[11]  W. D. Rust,et al.  Electric field magnitudes and lightning initiation in thunderstorms , 1995 .

[12]  Donald W. Burgess,et al.  Positive Cloud-to-Ground Lightning in Tornadic Storms and Hailstorms , 1994 .

[13]  R. Roussel-Dupre,et al.  Nonuniform runaway air-breakdown , 1994 .

[14]  Conrad L. Ziegler,et al.  Observed lightning morphology relative to modeled space charge and electric field distributions in a tornadic storm , 1994 .

[15]  Gurevich,et al.  Kinetic theory of runaway air breakdown. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[16]  J. Metcalf Observation of the Effects of Changing Electric Fields on the Orientation of Hydrometeors in a Thunderstorm , 1993 .

[17]  G. M. Milikh,et al.  Runaway electron mechanism of air breakdown and preconditioning during a thunderstorm , 1992 .

[18]  R. Farley,et al.  An intracloud lightning parameterization scheme for a storm electrification model , 1992 .

[19]  G. Parks,et al.  On the modulation of X ray fluxes in thunderstorms , 1992 .

[20]  John R. Kasha,et al.  A case study of the Thunderstorm Research International Project storm of July 11, 1978 2. Interrelations among the observable parameters controlling electrification , 1990 .

[21]  R. Lhermitte,et al.  A case study of the Thunderstorm Research International Project storm of July 11, 1978. 1. Analysis of the data base , 1990 .

[22]  S. Chauzy,et al.  Electric discharges between hydrometeors , 1989 .

[23]  Richard E. Orville,et al.  The relationship between lightning type and convective state of thunderclouds , 1989 .

[24]  Vladislav Mazur,et al.  Triggered lightning strikes to aircraft and natural intracloud discharges , 1989 .

[25]  S. Goodman,et al.  Convective Tendency Images Derived from a Combination of Lightning and Satellite Data , 1988 .

[26]  John H. Helsdon,et al.  A numerical modeling study of a Montana thunderstorm: 2. Model results versus observations involving electrical aspects , 1987 .

[27]  Chathan M. Cooke,et al.  Electrical discharge propagation in and around space charge clouds , 1985 .

[28]  R. Lhermitte,et al.  Thunderstorm electrification: A case study , 1985 .

[29]  Joseph B. Klemp,et al.  The structure and classification of numerically simulated convective storms in directionally varying wind shears , 1984 .

[30]  W. D. Rust,et al.  Lightning activity and severe storm structure , 1984 .

[31]  D. E. Proctor Lightning and precipitation in a small multicellular thunderstorm , 1983 .

[32]  F. Rawlins A numerical study of thunderstorm electrification using a three dimensional model incorporating the ice phase , 1982 .

[33]  W. Winn,et al.  Measurements of charged precipitation in a New Mexico thunderstorm: lower positive charge centers , 1982 .

[34]  D. MacGorman,et al.  Layered lightning activity , 1981 .

[35]  Roger Lhermitte,et al.  Doppler Radar and Radio Observations of Thunderstorms , 1979, IEEE Transactions on Geoscience Electronics.

[36]  Paul Krehbiel,et al.  An analysis of the charge structure of lightning discharges to ground , 1979 .

[37]  J. R. Nicholson,et al.  An Unusual Lightning Flash at Kennedy Space Center , 1978, Science.

[38]  R. F. Griffiths,et al.  The effects of air pressure and water vapour content on the propagation of positive corona streamers, and their implications to lightning initiation , 1976 .

[39]  W. Winn,et al.  Electric field growth in thunderclouds , 1975 .

[40]  R. F. Griffiths,et al.  Electrical corona from ice hydrometeors , 1974 .

[41]  J. Latham Experimental studies of the effect of electric fields on the growth of cloud particles , 1969 .

[42]  Heinz W. Kasemir,et al.  A Contribution to the Electrostatic Theory of a Lightning Discharge , 1960 .

[43]  S. E. Reynolds,et al.  THE DISTRIBUTION AND DISCHARGE OF THUNDERSTORM CHARGE-CENTERS , 1955 .

[44]  R. Gunn Electric Field Intensity Inside of Natural Clouds , 1948 .

[45]  E J Workman,et al.  The Electrical Structure of Thunderstorms , 1942 .

[46]  W. D. Rust,et al.  The electrical nature of storms , 1998 .

[47]  P. Krehbiel,et al.  Comparison of lightning and radar observations from the KSC LDAR and NEXRAD radar systems. , 1995 .

[48]  Tsutomu Takahashi Determination of lightning origins in a thunderstorm model , 1987 .

[49]  W. D. Rust,et al.  Lightning flash density versus altitude and storm structure from observations with UHF‐ and S‐band radars , 1984 .

[50]  T. Teer LIGHTNING CHANNEL STRUCTURE INSIDE AN ARIZONA THUNDERSTORM , 1974 .

[51]  B. Vonnegut,et al.  Radar observations of rain gushes following overhead lightning strokes , 1962 .