Granular Computing in Fuzzy Modeling and Data Mining

This study is concerned with the concept of information granularity, its representation and use along with a discussion on selected application areas. We discuss several key methodologies involved therein with a particular focus on fuzzy set technology. The agenda of the paper embraces two key issues: (i) underlying fundamentals of information granularity and various ways of processing of information granules and (ii) the use of the methodology of granular computing to a broad range of problems of system modeling, control, and classification. Activities carried out under the auspices of fuzzy sets (fuzzy modeling) as well as data mining and neural networks exploit the ideas of granular computing. We discuss them in more detail highlighting their advantages and design practices.

[1]  Witold Pedrycz,et al.  Conditional Fuzzy C-Means , 1996, Pattern Recognit. Lett..

[2]  Gregory Piatetsky-Shapiro,et al.  Knowledge Discovery in Databases: An Overview , 1992, AI Mag..

[3]  Rajesh N. Davé,et al.  Characterization and detection of noise in clustering , 1991, Pattern Recognit. Lett..

[4]  Gregory Piatetsky-Shapiro,et al.  An Overview of Knowledge Discovery in Database: Recent Progress and Challenges , 1993, RSKD.

[5]  Padhraic Smyth,et al.  From Data Mining to Knowledge Discovery in Databases , 1996, AI Mag..

[6]  Peter J. Rousseeuw,et al.  Finding Groups in Data: An Introduction to Cluster Analysis , 1990 .

[7]  Vijay K. Rohatgi,et al.  Advances in Fuzzy Set Theory and Applications , 1980 .

[8]  Lotfi A. Zadeh,et al.  Fuzzy sets and information granularity , 1996 .

[9]  Witold Pedrycz,et al.  Fuzzy set framework for development of a perception perspective , 1990 .

[10]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..

[11]  James M. Keller,et al.  A possibilistic approach to clustering , 1993, IEEE Trans. Fuzzy Syst..

[12]  Michael R. Anderberg,et al.  Cluster Analysis for Applications , 1973 .

[13]  Anil K. Jain,et al.  Algorithms for Clustering Data , 1988 .

[14]  E. Backer,et al.  Computer-assisted reasoning in cluster analysis , 1995 .

[15]  Kaoru Hirota,et al.  Industrial Applications of Fuzzy Technology , 1993, Springer Japan.

[16]  Brian Everitt,et al.  Cluster analysis , 1974 .

[17]  John A. Hartigan,et al.  Clustering Algorithms , 1975 .

[18]  George J. Klir,et al.  Fuzzy sets, uncertainty and information , 1988 .

[19]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[20]  Witold Pedrycz,et al.  Selected issues of frame of knowledge representation realized by means of linguistic labels , 1992, Int. J. Intell. Syst..

[21]  R. Yager MEASURING TRANQUILITY AND ANXIETY IN DECISION MAKING: AN APPLICATION OF FUZZY SETS , 1982 .

[22]  Jerzy W. Grzymala-Busse,et al.  Rough Sets , 1995, Commun. ACM.

[23]  Michio Sugeno,et al.  Industrial Applications of Fuzzy Technology in the World , 1995 .