Metals, Motifs, and Recognition in the Crystal Structure of a 5S rRNA Domain

[1]  H. C. Longuet-Higgins,et al.  Periodic table of the elements , 2018, Essential and Toxic Trace Elements and Vitamins in Human Health.

[2]  W. Wooster,et al.  Crystal structure of , 2005 .

[3]  R. Garrett,et al.  A ribonuclease-resistant region of 5S RNA and its relation to the RNA binding sites of proteins L18 and L25. , 1979, Nucleic acids research.

[4]  R. Garrett,et al.  Binding site of ribosomal proteins on prokaryotic 5S ribonucleic acids: a study with ribonucleases. , 1982, Biochemistry.

[5]  T. Steitz,et al.  Crystallization of a ribonuclease-resistant fragment of Escherichia coli 5 S ribosomal RNA and its complex with protein L25. , 1983, Journal of molecular biology.

[6]  W. Saenger Forces Stabilizing Associations Between Bases: Hydrogen Bonding and Base Stacking , 1984 .

[7]  I. Wool,et al.  Nuclease protection analysis of ribonucleoprotein complexes: use of the cytotoxic ribonuclease alpha-sarcin to determine the binding sites for Escherichia coli ribosomal proteins L5, L18, and L25 on 5S rRNA. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[8]  A small angle x-ray scattering study of a fragment derived from E. coli 5S RNA. , 1984, Nucleic acids research.

[9]  N. Leontis,et al.  Effect of magnesium ion on the structure of the 5S RNA from Escherichia coli. An imino proton magnetic resonance study of the helix I, IV, and V regions of the molecule. , 1986, Biochemistry.

[10]  M. Eisenstein,et al.  Structures of the mismatched duplex d(GGGTGCCC) and one of its Watson-Crick analogues d(GGGCGCCC). , 1988, Journal of molecular biology.

[11]  H. Noller,et al.  Interaction of elongation factors EF-G and EF-Tu with a conserved loop in 23S RNA , 1988, Nature.

[12]  R. T. Walker,et al.  In vitro incorporation of eubacterial, archaebacterial and eukaryotic 5S rRNAs into large ribosomal subunits of Bacillus stearothermophilus. , 1988, Nucleic acids research.

[13]  R. Mache,et al.  Characterization and footprint analysis of two 5S rRNA binding proteins from spinach chloroplast ribosomes , 1989 .

[14]  E. Westhof,et al.  Three-dimensional model of Escherichia coli ribosomal 5 S RNA as deduced from structure probing in solution and computer modeling. , 1991, Journal of molecular biology.

[15]  Mike Carson,et al.  RIBBONS 2.0 , 1991 .

[16]  J. Zou,et al.  Improved methods for building protein models in electron density maps and the location of errors in these models. , 1991, Acta crystallographica. Section A, Foundations of crystallography.

[17]  Axel T. Brunger,et al.  X-PLOR Version 3.1: A System for X-ray Crystallography and NMR , 1992 .

[18]  A. Brunger Free R value: a novel statistical quantity for assessing the accuracy of crystal structures. , 1992 .

[19]  D. Crothers,et al.  Major groove accessibility of RNA. , 1993, Science.

[20]  Tao Pan,et al.  12 Divalent Metal Ions in RNA Folding and Catalysis , 1993 .

[21]  G. Varani,et al.  The conformation of loop E of eukaryotic 5S ribosomal RNA. , 1993, Biochemistry.

[22]  Conformation of the central, three-helix junction of the 5 S ribosomal RNA of Sulfolobus acidocaldarius. , 1994, Journal of molecular biology.

[23]  K. Flaherty,et al.  Three-dimensional structure of a hammerhead ribozyme , 1994, Nature.

[24]  D. Turner,et al.  A periodic table of symmetric tandem mismatches in RNA. , 1995, Biochemistry.

[25]  P. Moore,et al.  The sarcin/ricin loop, a modular RNA. , 1995, Journal of molecular biology.

[26]  D Gautheret,et al.  G.U base pairing motifs in ribosomal RNA. , 1995, RNA.

[27]  A. Klug,et al.  The crystal structure of an AII-RNAhammerhead ribozyme: A proposed mechanism for RNA catalytic cleavage , 1995, Cell.

[28]  P. Moore,et al.  A proposal for the conformation of loop E in Escherichia coli 5S rRNA. , 1995, Biochemistry and cell biology = Biochimie et biologie cellulaire.

[29]  C. Kundrot,et al.  Crystal Structure of a Group I Ribozyme Domain: Principles of RNA Packing , 1996, Science.

[30]  L. Kay,et al.  α Helix-RNA Major Groove Recognition in an HIV-1 Rev Peptide-RRE RNA Complex , 1996, Science.

[31]  R. Read,et al.  Improved Structure Refinement Through Maximum Likelihood , 1996 .

[32]  J. Doudna,et al.  Metal-binding sites in the major groove of a large ribozyme domain. , 1996, Structure.

[33]  I. Wool,et al.  Determination of the 28 S ribosomal RNA identity element (G4319) for alpha-sarcin and the relationship of recognition to the selection of the catalytic site. , 1996, Journal of molecular biology.

[34]  G. Sheldrick,et al.  SHELXL: high-resolution refinement. , 1997, Methods in enzymology.

[35]  J. Doudna,et al.  A magnesium ion core at the heart of a ribozyme domain , 1997, Nature Structural Biology.

[36]  T. Steitz,et al.  Use of chemically modified nucleotides to determine a 62-nucleotide RNA crystal structure: a survey of phosphorothioates, Br, Pt and Hg. , 1997, Journal of biomolecular structure & dynamics.

[37]  C. Ban,et al.  Crystal structure of an alternating octamer r(GUAUGUA)dC with adjacent G x U wobble pairs. , 1997, Journal of molecular biology.

[38]  Z. Otwinowski,et al.  Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[39]  T. Steitz,et al.  Crystal structure of the two RNA binding domains of human hnRNP A1 at 1.75 Å resolution , 1997, Nature Structural Biology.

[40]  P. Adams,et al.  New applications of simulated annealing in X-ray crystallography and solution NMR. , 1997, Structure.

[41]  R. Read,et al.  Cross-validated maximum likelihood enhances crystallographic simulated annealing refinement. , 1997, Proceedings of the National Academy of Sciences of the United States of America.