Alternative power sources for remote sensors: A review

Abstract The goal of this review is to assess renewable power sources as alternatives to the batteries traditionally used for remote environmental monitoring. In this review, we first discuss remote sensors and then we: 1) review the power requirements and traditionally used power sources for remote sensors, 2) describe the working principles of the renewable power sources used for powering remote sensors, 3) evaluate the challenges and potentials of the renewable power sources, and 4) review the power management systems developed for remote power generation and discuss how to use them to generate reliable power. In the description of each of the renewable power sources, we include the current status and future directions of the research. We believe that hybrid systems using more than a single renewable power source can provide more reliable renewable power. We conclude that renewable power sources have been demonstrated to be able to generate sufficient power for remote sensors. Because of the environmental risks and cost of operation associated with batteries, renewable energy sources will need to be used to power remote sensors in the near future.

[1]  Chia-Yen Lee,et al.  Wireless Remote Weather Monitoring System Based on MEMS Technologies , 2011, Sensors.

[2]  Mihaela van der Schaar,et al.  Optimality and Improvement of Dynamic Voltage Scaling Algorithms for Multimedia Applications , 2010, IEEE Trans. Circuits Syst. I Regul. Pap..

[3]  Suat U. Ay A Compact CMOS Power-on-Reset Pulse Generator Design with Low-Power and Wide Operation Range , 2010, J. Circuits Syst. Comput..

[4]  Patrick Gaydecki,et al.  Flood member detection for real-time structural health monitoring of sub-sea structures of offshore steel oilrigs , 2007 .

[5]  Chris Garrett,et al.  Limits to tidal current power , 2008 .

[6]  Nils Størkersen,et al.  The alkaline aluminium/hydrogen peroxide power source in the Hugin II unmanned underwater vehicle , 1999 .

[7]  Christian C. Enz,et al.  WiseNET: an ultralow-power wireless sensor network solution , 2004, Computer.

[8]  Biswanath Mukherjee,et al.  Wireless sensor network survey , 2008, Comput. Networks.

[9]  Nils Størkersen,et al.  Electrochemical power sources for unmanned underwater vehicles used in deep sea survey operations , 2001 .

[10]  Joseph R. Burns,et al.  The Energy Harvesting Eel: a small subsurface ocean/river power generator , 2001 .

[11]  Elizabeth C. Kent,et al.  Methods to homogenize wind speeds from ships and buoys , 2005 .

[12]  Yunseop Kim,et al.  Remote Sensing and Control of an Irrigation System Using a Distributed Wireless Sensor Network , 2008, IEEE Transactions on Instrumentation and Measurement.

[13]  Robert Bogue Solar‐powered sensors: a review of products and applications , 2012 .

[14]  Roy Want,et al.  Guest Editors' Introduction: Energy Harvesting and Conservation , 2005, IEEE Pervasive Comput..

[15]  Nathan R. Evans,et al.  Optical delineation of benthic habitat using an autonomous underwater vehicle , 2007, J. Field Robotics.

[16]  B. G. Ateya,et al.  Anodic oxidation of sulfide ions from chloride brines , 2002 .

[17]  Patrick Gaydecki,et al.  Continuous monitoring guided wave encoded sensor for oil rig flooded member detection , 2005 .

[18]  Doron Shmilovitz,et al.  A Power Management Strategy for Minimization of Energy Storage Reservoirs in Wireless Systems With Energy Harvesting , 2011, IEEE Transactions on Circuits and Systems I: Regular Papers.

[19]  Shlomi Arnon,et al.  Underwater optical wireless communication network , 2010 .

[20]  Minbaek Lee,et al.  Self-powered environmental sensor system driven by nanogenerators , 2011 .

[21]  Kiyoshi Suyehiro,et al.  Practical application of a sea-water battery in deep-sea basin and its performance , 2009 .

[22]  Li Li,et al.  A solar-powered wireless cell for dynamically monitoring soil water content , 2009 .

[23]  S. Priya,et al.  Piezoelectric Windmill: A Novel Solution to Remote Sensing , 2004 .

[24]  L. Colalongo,et al.  A 0.2$-\hbox{1.2}$ V DC/DC Boost Converter for Power Harvesting Applications , 2009, IEEE Transactions on Power Electronics.

[25]  D. Diamond,et al.  Wireless sensor networks and chemo-/biosensing. , 2008, Chemical reviews.

[26]  E. F. Redden,et al.  Thermionic Energy Converters , 1963, IEEE Transactions on Aerospace.

[27]  Luca Benini,et al.  Design of a Solar-Harvesting Circuit for Batteryless Embedded Systems , 2009, IEEE Transactions on Circuits and Systems I: Regular Papers.

[28]  Chee-Yee Chong,et al.  Sensor networks: evolution, opportunities, and challenges , 2003, Proc. IEEE.

[29]  Siew-Chong Tan,et al.  Adaptive Mixed On-Time and Switching Frequency Control of a System of Interleaved Switched-Capacitor Converters , 2011, IEEE Transactions on Power Electronics.

[30]  Paul K. Wright,et al.  A piezoelectric vibration based generator for wireless electronics , 2004 .

[31]  Chris Garrett,et al.  Generating Power from Tidal Currents , 2004 .

[32]  R. Duggirala,et al.  Pervasive power: a radioisotope-powered piezoelectric generator , 2005, IEEE Pervasive Computing.

[33]  Richard H. Bube,et al.  Fundamentals of solar cells , 1983 .

[34]  Kirk Martinez,et al.  Environmental Sensor Networks: A revolution in the earth system science? , 2006 .

[35]  Peter Kauffman,et al.  The first demonstration of a microbial fuel cell as a viable power supply: Powering a meteorological buoy , 2008 .

[36]  Carrick Detweiler,et al.  AMOUR V: A Hovering Energy Efficient Underwater Robot Capable of Dynamic Payloads , 2010, Int. J. Robotics Res..

[37]  Henry A. Sodano,et al.  A review of power harvesting using piezoelectric materials (2003–2006) , 2007 .

[38]  Haluk Beyenal,et al.  Scaling up microbial fuel cells. , 2008, Environmental science & technology.

[39]  Deukhyoun Heo,et al.  Sediment microbial fuel cell powering a submersible ultrasonic receiver: New approach to remote monitoring , 2013 .

[40]  P. K. Shen,et al.  Development of an aluminium/sea water battery for sub-sea applications , 1994 .

[41]  Hirotaka Otobe,et al.  OCTOPUS, an Octo parameter underwater sensor, for use in biological oceanography studies , 1984 .

[42]  Joseph A. Paradiso,et al.  Energy Scavenging with Shoe-Mounted Piezoelectrics , 2001, IEEE Micro.

[43]  Jaeyun Lee,et al.  A study on the piezoelectric energy conversion system using motor vibration , 2012 .

[44]  Mark E Nielsen,et al.  Enhanced power from chambered benthic microbial fuel cells. , 2007, Environmental science & technology.

[45]  George C. Whipple,et al.  SOLUBILITY OF OXYGEN IN SEA WATER. , 1911 .

[46]  Marco Ferrari,et al.  Piezoelectric multifrequency energy converter for power harvesting in autonomous microsystems , 2008 .

[47]  Hyeoungwoo Kim,et al.  Small scale windmill , 2007 .

[48]  Carlos Serôdio,et al.  A ZigBee multi-powered wireless acquisition device for remote sensing applications in precision viticulture , 2008 .

[49]  Daniel J. Inman,et al.  Recharging Batteries using Energy Harvested from Thermal Gradients , 2007 .

[50]  Matt Welsh,et al.  Deploying a wireless sensor network on an active volcano , 2006, IEEE Internet Computing.

[51]  G. J. Snyder,et al.  Complex thermoelectric materials. , 2008, Nature materials.

[52]  John F. Vesecky,et al.  Prototype autonomous mini-buoy for use in a wireless networked, ocean surface sensor array , 2007, 2007 IEEE International Geoscience and Remote Sensing Symposium.

[53]  José Pelegrí-Sebastiá,et al.  A Solar Energy Powered Autonomous Wireless Actuator Node for Irrigation Systems , 2010, Sensors.

[54]  Neil J. Williams,et al.  Ocean acoustic sensor installation at the South Florida Ocean Measurement Center , 2002 .

[55]  P.L. Chapman,et al.  Comparison of Photovoltaic Array Maximum Power Point Tracking Techniques , 2007, IEEE Transactions on Energy Conversion.

[56]  Jan M. Rabaey,et al.  A study of low level vibrations as a power source for wireless sensor nodes , 2003, Comput. Commun..

[57]  Helen K. White,et al.  Sustainable energy from deep ocean cold seeps , 2008 .

[58]  Deukhyoun Heo,et al.  Batteryless, wireless sensor powered by a sediment microbial fuel cell. , 2008, Environmental science & technology.

[59]  Paulo J. S. G. Ferreira,et al.  Sun, wind and water flow as energy supply for small stationary data acquisition platforms , 2008 .

[60]  R Camplani,et al.  A Robust, Adaptive, Solar-Powered WSN Framework for Aquatic Environmental Monitoring , 2011, IEEE Sensors Journal.

[61]  Bruce E Logan,et al.  Microbial fuel cells--challenges and applications. , 2006, Environmental science & technology.

[62]  Jeffrey A. Nystuen,et al.  Weather Classification Using Passive Acoustic Drifters , 1997 .

[63]  Peter Kauffman,et al.  Development of a seawater battery for deep-water applications , 1997 .

[64]  Rachel Cardell-Oliver,et al.  A Reactive Soil Moisture Sensor Network: Design and Field Evaluation , 2005, Int. J. Distributed Sens. Networks.

[65]  Mauro Serpelloni,et al.  Self-Powered Wireless Sensor for Air Temperature and Velocity Measurements With Energy Harvesting Capability , 2011, IEEE Transactions on Instrumentation and Measurement.

[66]  Leonard M. Tender,et al.  Microbial fuel cell energy from an ocean cold seep , 2006 .

[67]  Taewhan Kim,et al.  Technique for Transition Energy-Aware Dynamic Voltage Assignment , 2006, IEEE Transactions on Circuits and Systems II: Express Briefs.

[68]  J. Bellingham,et al.  Autonomous Oceanographic Sampling Networks , 1993 .

[69]  Haluk Beyenal,et al.  Microbial fuel cell using anaerobic respiration as an anodic reaction and biomineralized manganese as a cathodic reactant. , 2005, Environmental science & technology.

[70]  Sanjib Kumar Panda,et al.  Optimized Wind Energy Harvesting System Using Resistance Emulator and Active Rectifier for Wireless Sensor Nodes , 2011, IEEE Transactions on Power Electronics.

[71]  Sanjib Kumar Panda,et al.  Self-Autonomous Wireless Sensor Nodes With Wind Energy Harvesting for Remote Sensing of Wind-Driven Wildfire Spread , 2011, IEEE Transactions on Instrumentation and Measurement.

[72]  Regan Zane,et al.  Power Management System for Online Low Power RF Energy Harvesting Optimization , 2010, IEEE Transactions on Circuits and Systems I: Regular Papers.

[73]  D. Puccinelli,et al.  Wireless sensor networks: applications and challenges of ubiquitous sensing , 2005, IEEE Circuits and Systems Magazine.

[74]  Giuseppe Anastasi,et al.  Energy management in wireless sensor networks with energy-hungry sensors , 2009 .

[75]  R. Aller,et al.  The sedimentary Mn cycle in Long Island Sound: Its role as intermediate oxidant and the influence of bioturbation, O 2 , and C org flux on diagenetic reaction balances , 1994 .

[76]  M.P. Flynn,et al.  An RF-powered, wireless CMOS temperature sensor , 2006, IEEE Sensors Journal.

[77]  Nils Størkersen,et al.  CLIPPER: a long-range, autonomous underwater vehicle using magnesium fuel and oxygen from the sea , 2004 .

[78]  Jayant Sirohi,et al.  Piezoelectric wind energy harvester for low-power sensors , 2011 .

[79]  K. Mayaram,et al.  Efficient Far-Field Radio Frequency Energy Harvesting for Passively Powered Sensor Networks , 2008, IEEE Journal of Solid-State Circuits.

[80]  Sam Behrens,et al.  Energy Options for Wireless Sensor Nodes , 2008, Sensors.

[81]  Purushottam Kulkarni,et al.  Energy Harvesting Sensor Nodes: Survey and Implications , 2011, IEEE Communications Surveys & Tutorials.

[82]  Alex Elvin,et al.  A self-powered damage detection sensor , 2003 .

[83]  Vedat Coskun,et al.  Wireless sensor networks for underwater survelliance systems , 2006, Ad Hoc Networks.

[84]  Zhiyong Ren,et al.  Active energy harvesting from microbial fuel cells at the maximum power point without using resistors. , 2012, Environmental science & technology.

[85]  Jae-Do Park,et al.  Hysteresis controller based maximum power point tracking energy harvesting system for microbial fuel cells , 2012 .

[86]  Daniel Day,et al.  SIOExplorer: IT for research and education , 2003, Oceans 2003. Celebrating the Past ... Teaming Toward the Future (IEEE Cat. No.03CH37492).

[87]  Khai D. T. Ngo,et al.  A hydrogen leakage detection system using self-powered wireless hydrogen sensor nodes , 2007 .

[88]  Jörg Förster,et al.  A Piezoelectrical Rain Gauge for Application on Buoys , 2004 .

[89]  Mario Di Francesco,et al.  Energy conservation in wireless sensor networks: A survey , 2009, Ad Hoc Networks.

[90]  M. Barak,et al.  Power Sources 4 , 1974 .

[91]  Mani B. Srivastava,et al.  Power management in energy harvesting sensor networks , 2007, TECS.

[92]  Josh Davidson,et al.  Thermal Energy Harvesting for Wireless Sensor Nodes with Case Studies , 2010 .

[93]  Hongwei Gao,et al.  Energy Harvesting With Microbial Fuel Cell and Power Management System , 2011, IEEE Transactions on Power Electronics.

[94]  F. Giroud,et al.  Single Glucose Biofuel Cells Implanted in Rats Power Electronic Devices , 2013, Scientific Reports.

[95]  Yanqiu Li,et al.  Hybrid Micropower Source for Wireless Sensor Network , 2008, IEEE Sensors Journal.

[96]  Deukhyoun Heo,et al.  Power management system for a 2.5 W remote sensor powered by a sediment microbial fuel cell , 2011 .

[97]  Alex Elvin,et al.  A self-powered mechanical strain energy sensor , 2001 .

[98]  Sanjib Kumar Panda,et al.  Energy Harvesting From Hybrid Indoor Ambient Light and Thermal Energy Sources for Enhanced Performance of Wireless Sensor Nodes , 2011, IEEE Transactions on Industrial Electronics.

[99]  Dimitrios D. Vergados,et al.  A survey on power control issues in wireless sensor networks , 2007, IEEE Communications Surveys & Tutorials.