Sensorless nonlinear control of induction motors using Unscented Kalman Filtering

Sensorless control for induction motors using Unscented Kalman Filtering is studied. The complete 6-th order dynamic model of the induction motor is analyzed and a nonlinear controller based on differential flatness theory is developed. The Unscented Kalman Filter is proposed to estimate the state vector of the nonlinear electric motor using a limited number of sensors, such as the ones measuring stator currents. Next, control of the induction motor is implemented through feedback of the estimated state vector. The efficiency of the Unscented Kalman Filter-based control scheme, is tested through simulation experiments.

[1]  Philippe Martin,et al.  TWO REMARKS ON INDUCTION MOTORS , 2005 .

[2]  S. Kumar,et al.  A critical evaluation and experimental verification of Extended Kalman Filter, Unscented Kalman Filter and Neural State Filter for state estimation of three phase induction motor , 2011, Appl. Soft Comput..

[3]  Romeo Ortega,et al.  Modeling and Control of Induction Motors , 2001 .

[4]  M. Ehsani,et al.  Simple Derivative-Free Nonlinear State Observer for Sensorless AC Drives , 2006, IEEE/ASME Transactions on Mechatronics.

[5]  Jeffrey K. Uhlmann,et al.  Unscented filtering and nonlinear estimation , 2004, Proceedings of the IEEE.

[6]  Gerasimos Rigatos,et al.  Fuzzy model validation using the local statistical approach , 2009, Fuzzy Sets Syst..

[7]  Pierluigi Siano,et al.  Differential flatness theory and Extended Kalman Filtering for sensorless control of induction motors , 2012 .

[8]  F. Alonge,et al.  Robustness analysis of an Extended Kalman Filter for sensorless control of induction motors , 2010, 2010 IEEE International Symposium on Industrial Electronics.

[9]  Gerasimos G. Rigatos Particle and Kalman filtering for fault diagnosis in DC motors , 2009, 2009 IEEE Vehicle Power and Propulsion Conference.

[10]  Majid Poshtan,et al.  Model-based fault detection in induction Motors , 2010, 2010 IEEE International Conference on Control Applications.

[11]  Gerasimos Rigatos,et al.  Extended Kalman filtering for fuzzy modelling and multi-sensor fusion , 2007 .

[12]  Mickaël Hilairet,et al.  Speed and rotor flux estimation of induction machines using a two-stage extended Kalman filter , 2009, Autom..

[13]  Gerasimos G. Rigatos,et al.  Modelling and Control for Intelligent Industrial Systems - Adaptive Algorithms in Robotics and Industrial Engineering , 2011, Intelligent Systems Reference Library.

[14]  Joachim Holtz,et al.  Sensorless control of induction motor drives , 2002, Proc. IEEE.

[15]  Hassan Hammouri,et al.  High-gain observer based state and parameter estimation in nonlinear systems , 2004 .

[16]  Gerasimos G. Rigatos Adaptive fuzzy control for field-oriented induction motor drives , 2011, Neural Computing and Applications.

[17]  S. Särkkä,et al.  On Unscented Kalman Filtering for State Estimation of Continuous-Time Nonlinear Systems , 2007, IEEE Transactions on Automatic Control.

[18]  Maki K. Habib,et al.  Robotics for Risky Interventions and Environmental Surveillance , 2010 .

[19]  Brigitte d'Andréa-Novel,et al.  Flatness-Based Vehicle Steering Control Strategy With SDRE Feedback Gains Tuned Via a Sensitivity Approach , 2007, IEEE Transactions on Control Systems Technology.

[20]  E. Kamen,et al.  Introduction to Optimal Estimation , 1999 .

[21]  F.W. Fuchs,et al.  Flatness-Based Control of an Induction Machine Fed via Voltage Source Inverter - Concept, Control Design and Performance Analysis , 2006, IECON 2006 - 32nd Annual Conference on IEEE Industrial Electronics.

[22]  Gerasimos Rigatos,et al.  Adaptive fuzzy control of DC motors using state and output feedback , 2009 .

[23]  R. Marino,et al.  Adaptive input-output linearizing control of induction motors , 1993, IEEE Trans. Autom. Control..

[24]  Michèle Basseville,et al.  Detection of Abrupt Changes: Theory and Applications. , 1995 .

[25]  Malek Ghanes,et al.  On Sensorless Induction Motor Drives: Sliding-Mode Observer and Output Feedback Controller , 2009, IEEE Transactions on Industrial Electronics.

[26]  Hugh F. Durrant-Whyte,et al.  A new method for the nonlinear transformation of means and covariances in filters and estimators , 2000, IEEE Trans. Autom. Control..

[27]  A. Ersak,et al.  State estimation of induction motor using unscented Kalman filter , 2003, Proceedings of 2003 IEEE Conference on Control Applications, 2003. CCA 2003..

[28]  A. Ersak,et al.  A comparative study on Kalman filtering techniques designed for state estimation of industrial AC drive systems , 2004, Proceedings of the IEEE International Conference on Mechatronics, 2004. ICM '04..

[29]  Rudolph van der Merwe,et al.  Sigma-Point Kalman Filters for Integrated Navigation , 2004 .