Quantum 3-SAT Is QMA1-Complete
暂无分享,去创建一个
[1] Peter Selinger,et al. Exact synthesis of multi-qubit Clifford+T circuits , 2012, ArXiv.
[2] Christopher R. Laumann,et al. Random quantum satisfiability , 2010, Quantum Inf. Comput..
[3] Daniel Nagaj,et al. Criticality without frustration for quantum spin-1 chains. , 2012, Physical review letters.
[4] Chris Marriott,et al. Quantum Arthur–Merlin games , 2004, Proceedings. 19th IEEE Annual Conference on Computational Complexity, 2004..
[5] Bojan Mohar,et al. Eigenvalues, diameter, and mean distance in graphs , 1991, Graphs Comb..
[6] Julia Kempe,et al. The Complexity of the Local Hamiltonian Problem , 2004, FSTTCS.
[7] Zhengfeng Ji,et al. complete characterization of the ground-space structure of two-body frustration-free hamiltonians for qubits , 2010, 1010.2480.
[8] New construction for a QMA complete three-local Hamiltonian , 2007, quant-ph/0612113.
[9] Sergey Bravyi,et al. Efficient algorithm for a quantum analogue of 2-SAT , 2006, quant-ph/0602108.
[10] Yong Zhang,et al. Fast amplification of QMA , 2009, Quantum Inf. Comput..
[11] Daniel Nagaj. Fast universal quantum computation with railroad-switch local Hamiltonians , 2009, 0908.4219.
[12] Andris Ambainis,et al. A quantum lovász local lemma , 2009, STOC '10.
[13] T. Osborne. Hamiltonian complexity , 2011, Reports on progress in physics. Physical Society.
[14] Roderich Moessner,et al. Random quantum satisfiabiilty , 2010 .
[15] Matthew Coudron,et al. Unfrustration Condition and Degeneracy of Qudits on Trees , 2012 .
[16] Richard Phillips Feynman,et al. Quantum mechanical computers , 1984, Feynman Lectures on Computation.
[17] Hirotada Kobayashi,et al. Achieving perfect completeness in classical-witness quantum merlin-arthur proof systems , 2011, Quantum Inf. Comput..
[18] Mikhail N. Vyalyi,et al. Classical and Quantum Computation , 2002, Graduate studies in mathematics.
[19] Oded Regev,et al. Quantum SAT for a Qutrit-Cinquit Pair Is QMA1-Complete , 2008, ICALP.
[20] Scott Aaronson,et al. On perfect completeness for QMA , 2008, Quantum Inf. Comput..
[21] Stathis Zachos,et al. Probabalistic Quantifiers vs. Distrustful Adversaries , 1987, FSTTCS.
[22] Alexander Russell,et al. Bounds on the Quantum Satisfiability Threshold , 2009, ICS.
[23] Christopher R. Laumann,et al. On product, generic and random generic quantum satisfiability , 2009, ArXiv.
[24] François Le Gall,et al. Stronger methods of making quantum interactive proofs perfectly complete , 2012, ITCS '13.
[25] Edward Farhi,et al. Unfrustrated qudit chains and their ground states , 2010, 1001.1006.