The Large-Eddy Simulation (LES) Atmospheric Radiation Measurement (ARM) Symbiotic Simulation and Observation (LASSO) Activity for Continental Shallow Convection

AbstractThe U.S. Department of Energy’s Atmospheric Radiation Measurement (ARM) user facility recently initiated the Large-Eddy Simulation (LES) ARM Symbiotic Simulation and Observation (LASSO) act...

[1]  E. J. Mlawer Broadband radiative closure studies in the Atmospheric Radiation Measurement (ARM) program , 2006 .

[2]  G. Feingold,et al.  Quantification of the Radiative Effect of Aerosol–Cloud Interactions in Shallow Continental Cumulus Clouds , 2020, Journal of the Atmospheric Sciences.

[3]  Clemens Simmer,et al.  JOYCE: Jülich Observatory for cloud evolution , 2015 .

[4]  Christine Unal,et al.  Precipitation measurement at CESAR, the Netherlands , 2010 .

[5]  G. Feingold,et al.  Surface Solar Irradiance in Continental Shallow Cumulus Fields: Observations and Large-Eddy Simulation , 2019, Journal of the Atmospheric Sciences.

[6]  M. H. Zhang,et al.  Objective Analysis of ARM IOP Data: Method and Sensitivity , 1999 .

[7]  Zhijin Li,et al.  Spectral characteristics of background error covariance and multiscale data assimilation , 2016 .

[8]  U. Löhnert,et al.  Information Content and Uncertainties in Thermodynamic Profiles and Liquid Cloud Properties Retrieved from the Ground-Based Atmospheric Emitted Radiance Interferometer (AERI) , 2014 .

[9]  Thijs Heus,et al.  CONTINUOUS SINGLE-COLUMN MODEL EVALUATION AT A PERMANENT METEOROLOGICAL SUPERSITE , 2012 .

[10]  L. Riihimaki,et al.  Long-Term Retrievals of Cloud Type and Fair-Weather Shallow Cumulus Events at the ARM SGP Site , 2019, Journal of Atmospheric and Oceanic Technology.

[11]  T. Heus,et al.  Power-Law Scaling in the Internal Variability of Cumulus Cloud Size Distributions due to Subsampling and Spatial Organization , 2019, Journal of the Atmospheric Sciences.

[12]  S. Klein,et al.  Differences in Eddy‐Correlation and Energy‐Balance Surface Turbulent Heat Flux Measurements and Their Impacts on the Large‐Scale Forcing Fields at the ARM SGP Site , 2019, Journal of Geophysical Research: Atmospheres.

[13]  Thirza van Laar,et al.  Investigating the Diurnal Evolution of the Cloud Size Distribution of Continental Cumulus Convection Using Multiday LES , 2019, Journal of the Atmospheric Sciences.

[14]  Evgueni I. Kassianov,et al.  Temporal Variability of Fair-Weather Cumulus Statistics at the ACRF SGP Site , 2008 .

[15]  David D. Turner,et al.  Long-Term Evaluation of Temperature Profiles Measured by an Operational Raman Lidar , 2013 .

[16]  Kayo Ide,et al.  A Multiscale Variational Data Assimilation Scheme: Formulation and Illustration , 2015 .

[17]  Robert Jackson,et al.  RACORO continental boundary layer cloud investigations: 2. Large‐eddy simulations of cumulus clouds and evaluation with in situ and ground‐based observations , 2015 .

[18]  David A. Randall,et al.  Alternative methods for specification of observed forcing in single-column models and cloud system models , 1999 .

[19]  Maoyi Huang,et al.  The Impact of Surface Heterogeneities and Land‐Atmosphere Interactions on Shallow Clouds Over ARM SGP Site , 2018, Journal of Advances in Modeling Earth Systems.

[20]  B. Stevens,et al.  The Barbados Cloud Observatory: Anchoring Investigations of Clouds and Circulation on the Edge of the ITCZ , 2016 .

[21]  Pavlos Kollias,et al.  Estimation of cloud fraction profile in shallow convection using a scanning cloud radar , 2016 .

[22]  Vr Morris Total Sky Imager (TSI) Handbook , 2005 .

[23]  Minghua Zhang,et al.  Constrained Variational Analysis of Sounding Data Based on Column-Integrated Budgets of Mass, Heat, Moisture, and Momentum: Approach and Application to ARM Measurements. , 1997 .

[24]  Minghua Zhang,et al.  Developing long‐term single‐column model/cloud system–resolving model forcing data using numerical weather prediction products constrained by surface and top of the atmosphere observations , 2004 .

[25]  E. Clothiaux,et al.  Objective Determination of Cloud Heights and Radar Reflectivities Using a Combination of Active Remote Sensors at the ARM CART Sites , 2000 .

[26]  K.,et al.  Simulations of Trade Wind Cumuli under a Strong Inversion , 2001 .

[27]  Minghua Zhang,et al.  Development of fine‐resolution analyses and expanded large‐scale forcing properties: 1. Methodology and evaluation , 2015 .

[28]  William I. Gustafson,et al.  Recommendations for the Implementation of the LASSO Workflow , 2017 .

[29]  M. Shupe,et al.  Final Report: Enhanced Atmospheric Research at the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) , 2016 .

[30]  A. P. Siebesma,et al.  A Large Eddy Simulation Intercomparison Study of Shallow Cumulus Convection , 2003 .

[31]  Jean-Christophe Golaz,et al.  Large‐eddy simulation of the diurnal cycle of shallow cumulus convection over land , 2002 .

[32]  A. P. Siebesma,et al.  A Year-Long Large-Eddy Simulation of the Weather over Cabauw: An Overview , 2015 .

[33]  P. Kollias,et al.  Reconciling Differences Between Large‐Eddy Simulations and Doppler Lidar Observations of Continental Shallow Cumulus Cloud‐Base Vertical Velocity , 2019, Geophysical Research Letters.

[34]  David D. Turner,et al.  Automated Retrievals of Water Vapor and Aerosol Profiles from an Operational Raman Lidar , 2002 .

[35]  David D. Turner,et al.  Shallow Cumulus in WRF Parameterizations Evaluated against LASSO Large-Eddy Simulations , 2018, Monthly Weather Review.

[36]  G. Powers,et al.  A Description of the Advanced Research WRF Version 3 , 2008 .

[37]  Kyle Dumas,et al.  Description of the LASSO Data Bundles Product , 2018 .

[38]  D. Randall,et al.  Cloud resolving modeling of the ARM summer 1997 IOP: Model formulation, results, uncertainties, and sensitivities , 2003 .

[39]  Yunyan Zhang,et al.  Factors Controlling the Vertical Extent of Fair-Weather Shallow Cumulus Clouds over Land: Investigation of Diurnal-Cycle Observations Collected at the ARM Southern Great Plains Site , 2013 .

[40]  Jonathan P. Taylor,et al.  Atmospheric Radiation Measurements , 2013 .

[41]  H. Russchenberg,et al.  Monitoring aerosol–cloud interactions at the CESAR Observatory in the Netherlands , 2016 .