Condensation of water vapour during supersonic expansion in nozzles

Existing data on the condensation of steam and moist air in supersonic nozzles are compared with predictions based on nucleation and drop-growth theory. It is concluded that, if the surface tension is assumed independent of curvature, and the classical liquid-drop theory (based on a stationary liquid drop) is used, the theory is in general agreement with the data. The effects of uncertainties in cluster surface energy and also of the large corrections to nucleation theory due to the ‘gasification’ concept are examined. The gasification correction is in accord with experimental data only if the surface tension is considered to rise significantly with curvature. In neither case can the Tolman or Kirkwood–Buff equations be supported. A review of existing data shows that there is some question as to the appropriate value of the condensation coefficient but this is of little consequence as long as the accommodation coefficient for the liquid–vapour surface is taken to be unity. The usefulness of the nozzle experiments for testing the validity of nucleation theory is demonstrated.

[1]  C. Powell Condensation phenomena at different temperatures , 1928 .

[2]  I. Stranski,et al.  The mechanism of evaporation , 1956 .

[3]  Andrew A. Pouring,et al.  Experiments on Condensation of Water Vapor by Homogeneous Nucleation in Nozzles , 1964 .

[4]  H. Wachman,et al.  The Thermal Accommodation Coefficient: A Critical Survey , 1962 .

[5]  J. Feder,et al.  Homogeneous nucleation and growth of droplets in vapours , 1966 .

[6]  A. J. Barnard The theory of condensation of supersaturated vapours in the absence of ions , 1953, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[7]  R. Buhler Condensation of air components in hypersonic wind tunnels : theoretical calculations and comparison with experiment , 1952 .

[8]  B. Schmidt Beobachtungen über das Verhalten der durch Wasserdampfkondensation ausgelösten Störungen in einer Überschall-Windkanaldüse , 1962 .

[9]  R. Probstein Time Lag in the Self‐Nucleation of a Supersaturated Vapor , 1951 .

[10]  W. Flygare,et al.  Microwave Spectrum, Structure, Quadrupole Interaction, Dipole Moment, and Bent C–Cl Bonds in 1,1‐dichlorocyclopropane , 1962 .

[11]  R. Littlewood,et al.  On the evaporation coefficient , 1956 .

[12]  B. Paul Compilation of Evaporation Coefficients , 1962 .

[13]  C. Wilson On the Comparative Efficiency as Condensation Nuclei of Positively and Negatively Charged Ions , 1900 .

[14]  P. Wegener,et al.  Condensation in Supersonic and Hypersonic Wind Tunnels , 1958 .

[15]  K. Hickman,et al.  Studies in High Vacuum Evaporation: The Falling-Stream Tensimeter , 1952 .

[16]  J. Parlange,et al.  Surface Tension of Liquids from Water Bell Experiments , 1964 .

[17]  K. Hickman Maximum Evaporation Coefficient of Water , 1954 .

[18]  T. Alty,et al.  The Accommodation Coefficient and the Evaporation Coefficient of Water , 1935 .

[19]  H. Stever F. Condensation Phenomena in High Speed Flows , 1958 .

[20]  J. Lothe,et al.  RECONSIDERATIONS OF NUCLEATION THEORY , 1962 .

[21]  C. Wilson Oil the condensation nuclei produced in gases by the action of Röntgen rays, uranium rays, ultra-violet light, and other agents , 1899, Proceedings of the Royal Society of London.

[22]  A. M. Binnie,et al.  The Pressure Distribution in a Convergent-Divergent Steam Nozzle: , 1938 .

[23]  K. Oswatitsch,et al.  Kondensationserscheinungen in Überschalldüsen . , 1942 .

[24]  W. Prüger Die Verdampfungsgeschwindigkeit der Flüssigkeiten , 1940 .

[25]  T. Sherwood,et al.  The maximum rate of sublimation of solids , 1962 .

[26]  Arthur Kantrowitz,et al.  Nucleation in Very Rapid Vapor Expansions , 1951 .

[27]  J. Walecka ELECTRON SCATTERING AND NUCLEAR STRUCTURE. , 1968 .

[28]  F. Kuhrt Das Tröpfchenmodell übersättigter realer Gase , 1952 .

[29]  A. M. Binnie,et al.  An electrical detector of condensation in high-velocity steam , 1942, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[30]  R. A. Oriani,et al.  Emendations to Nucleation Theory and the Homogeneous Nucleation of Water from the Vapor , 1963 .

[31]  F. Kuhrt Das Tröpfchenmodell realer Gase , 1952 .