GALAXY CLUSTER BARYON FRACTIONS REVISITED

We measure the baryons contained in both the stellar and hot-gas components for 12 galaxy clusters and groups at z ∼ 0.1 with M = 1–5 × 1014 M☉. This paper improves upon our previous work through the addition of XMM-Newton X-ray data, enabling measurements of the total mass and masses of each major baryonic component—intracluster medium, intracluster stars, and stars in galaxies—for each system. We recover a mean relation for the stellar mass versus halo mass, , that is 1σ shallower than in our previous result. We confirm that the partitioning of baryons between the stellar and hot-gas components is a strong function of M500; the fractions of total mass in stars and X-ray gas within a sphere of radius r500 scale as and , respectively. We also confirm that the combination of the brightest cluster galaxy and intracluster stars is an increasingly important contributor to the stellar baryon budget in lower halo masses. Studies that fail to fully account for intracluster stars typically underestimate the normalization of the stellar baryon fraction versus M500 relation by ∼25%. Our derived stellar baryon fractions are also higher, and the trend with halo mass weaker, than those derived from recent halo occupation distribution and abundance matching analyses. One difference from our previous work is the weak, but statistically significant, dependence here of the total baryon fraction upon halo mass: . For M500 ≳ 2 × 1014, the total baryon fractions within r500 are on average 18% below the universal value from the seven year Wilkinson Microwave Anisotropy Probe (WMAP) analysis, or 7% below for the cosmological parameters from the Planck analysis. In the latter case, the difference between the universal value and cluster baryon fractions is less than the systematic uncertainties associated with the M500 determinations. The total baryon fractions exhibit significant scatter, particularly at M500 < 2 × 1014 M☉ where they range from 60%–90%, or 65%–100%, of the universal value for WMAP7 and Planck, respectively. The ratio of the stellar-to-gas mass within r500 (M⋆/Mgas), a measure of integrated star-formation efficiency, strongly decreases with increasing M500. This relation is tight, with an implied intrinsic scatter of 12%. The fact that this relation remains tight at low mass implies that the larger scatter in the total baryon fractions at these masses arises from either true scatter in the total baryon content or observational scatter in M500 rather than late-time physical processes such as redistribution of gas to beyond r500. If the scatter in the baryon content at low mass is physical, then our results imply that in this mass range, the integrated star-formation efficiency rather than the baryon fraction that is constant at fixed halo mass.

[1]  Edward J. Wollack,et al.  NINE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: FINAL MAPS AND RESULTS , 2012, 1212.5225.

[2]  U. Florida,et al.  The baryon budget on the galaxy group/cluster boundary , 2012, 1212.1613.

[3]  H. Hoekstra,et al.  JOINT ANALYSIS OF CLUSTER OBSERVATIONS. II. CHANDRA/XMM-NEWTON X-RAY AND WEAK LENSING SCALING RELATIONS FOR A SAMPLE OF 50 RICH CLUSTERS OF GALAXIES , 2012, 1210.3689.

[4]  S. Borgani,et al.  Baryon Census in Hydrodynamical Simulations of Galaxy Clusters , 2012, 1209.5058.

[5]  R. Wechsler,et al.  THE AVERAGE STAR FORMATION HISTORIES OF GALAXIES IN DARK MATTER HALOS FROM z = 0–8 , 2012, 1207.6105.

[6]  S. Andreon A low-scatter survey-based mass proxy for clusters of galaxies , 2012, 1211.0790.

[7]  R. Bernstein,et al.  EVIDENCE FOR TWO DISTINCT STELLAR INITIAL MASS FUNCTIONS , 2012, 1209.3788.

[8]  Pieter van Dokkum,et al.  THE STELLAR INITIAL MASS FUNCTION IN EARLY-TYPE GALAXIES FROM ABSORPTION LINE SPECTROSCOPY. II. RESULTS , 2012, 1205.6473.

[9]  C. Conroy,et al.  THE STELLAR INITIAL MASS FUNCTION IN EARLY-TYPE GALAXIES FROM ABSORPTION LINE SPECTROSCOPY. I. DATA AND EMPIRICAL TRENDS , 2012, 1205.6471.

[10]  P. Nulsen,et al.  Mechanical feedback from active galactic nuclei in galaxies, groups and clusters , 2012, 1204.0006.

[11]  R. Davies,et al.  Systematic variation of the stellar initial mass function in early-type galaxies , 2012, Nature.

[12]  Sergey E. Koposov,et al.  The radial distribution of galaxies in groups and clusters , 2012, 1201.5491.

[13]  A. Berlind,et al.  CONSTRAINING SATELLITE GALAXY STELLAR MASS LOSS AND PREDICTING INTRAHALO LIGHT. I. FRAMEWORK AND RESULTS AT LOW REDSHIFT , 2012, 1201.2407.

[14]  A. Finoguenov,et al.  THE INTEGRATED STELLAR CONTENT OF DARK MATTER HALOS , 2011, 1109.0010.

[15]  U. Chicago,et al.  BARYON CONTENT OF MASSIVE GALAXY CLUSTERS AT z = 0–0.6 , 2011, 1112.1705.

[16]  Garching,et al.  The galaxy stellar mass function of X-ray detected groups - Environmental dependence of galaxy evolution in the COSMOS survey , 2011, 1111.1729.

[17]  P. Schneider,et al.  Star-formation efficiency and metal enrichment of the intracluster medium in local massive clusters of galaxies , 2011, 1109.0390.

[18]  P. Schneider,et al.  XMM-NEWTON/SLOAN DIGITAL SKY SURVEY: STAR FORMATION EFFICIENCY IN GALAXY CLUSTERS AND CONSTRAINTS ON THE MATTER-DENSITY PARAMETER , 2011, 1108.3678.

[19]  J. Tinker,et al.  Galaxy evolution in groups and clusters: star formation rates, red sequence fractions and the persistent bimodality , 2011, 1107.5311.

[20]  S. Allen,et al.  Baryons at the Edge of the X-ray–Brightest Galaxy Cluster , 2011, Science.

[21]  R. Davies,et al.  The ATLAS3D project – I. A volume-limited sample of 260 nearby early-type galaxies: science goals and selection criteria , 2010, 1012.1551.

[22]  H. Hoekstra,et al.  INTRACLUSTER SUPERNOVAE IN THE MULTI-EPOCH NEARBY CLUSTER SURVEY , 2010, 1011.1310.

[23]  V. Springel,et al.  Gas expulsion by quasar-driven winds as a solution to the overcooling problem in galaxy groups and clusters , 2010, 1008.4799.

[24]  M. Guainazzi,et al.  Cross-calibrating X-ray detectors with clusters of galaxies: an IACHEC study , 2010, 1008.2102.

[25]  F. Pearce,et al.  Baryon fractions in clusters of galaxies: evidence against a pre-heating model for entropy generation , 2010, 1007.0887.

[26]  R. Nichol,et al.  THE XMM CLUSTER SURVEY: THE BUILD-UP OF STELLAR MASS IN BRIGHTEST CLUSTER GALAXIES AT HIGH REDSHIFT , 2010, 1005.4681.

[27]  S. Andreon The stellar mass fraction and baryon content of galaxy clusters and groups , 2010, 1004.2785.

[28]  A. Finoguenov,et al.  LoCuSS: A COMPARISON OF CLUSTER MASS MEASUREMENTS FROM XMM-NEWTON AND SUBARU—TESTING DEVIATION FROM HYDROSTATIC EQUILIBRIUM AND NON-THERMAL PRESSURE SUPPORT , 2010, 1001.0780.

[29]  M. Balogh,et al.  Constraints on intragroup stellar mass from hostless Type Ia supernovae , 2009, 0912.3455.

[30]  Institute for Astronomy,et al.  STELLAR AND TOTAL BARYON MASS FRACTIONS IN GROUPS AND CLUSTERS SINCE REDSHIFT 1 , 2009, 0904.0448.

[31]  A. Hornstrup,et al.  CHANDRA CLUSTER COSMOLOGY PROJECT. II. SAMPLES AND X-RAY DATA REDUCTION , 2008, 0805.2207.

[32]  M. Bernardi,et al.  Curvature in the scaling relations of early-type galaxies , 2008, 0810.4922.

[33]  D. Kelson,et al.  THE ENRICHMENT OF THE INTRACLUSTER MEDIUM , 2008, 0810.1272.

[34]  J. Gunn,et al.  THE ASTROPHYSICAL JOURNAL Preprint typeset using LATEX style emulateapj v. 10/09/06 THE PROPAGATION OF UNCERTAINTIES IN STELLAR POPULATION SYNTHESIS MODELING I: THE RELEVANCE OF UNCERTAIN ASPECTS OF STELLAR EVOLUTION AND THE IMF TO THE DERIVED PHYSICAL PR , 2022 .

[35]  M. Donahue,et al.  CHANDRA STUDIES OF THE X-RAY GAS PROPERTIES OF GALAXY GROUPS , 2008, 0805.2320.

[36]  E. Cypriano,et al.  Star formation efficiency in galaxy clusters , 2008, 0804.1102.

[37]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[38]  R. Nichol,et al.  Mass and Redshift Dependence of Star Formation in Relaxed Galaxy Clusters , 2008, 0802.2282.

[39]  R. Bower,et al.  Testing cold dark matter with the hierarchical build-up of stellar light , 2008, 0801.0990.

[40]  S. L. Snowden,et al.  A Catalog of Galaxy Clusters Observed by XMM-Newton , 2007, 0710.2241.

[41]  Durham,et al.  Towards a holistic view of the heating and cooling of the intracluster medium , 2007, 0706.2768.

[42]  P. Nulsen,et al.  Heating Hot Atmospheres with Active Galactic Nuclei , 2007, 0709.2152.

[43]  IoA,et al.  Improved constraints on dark energy from Chandra X-ray observations of the largest relaxed galaxy clusters , 2007, 0706.0033.

[44]  D. Zaritsky,et al.  A Census of Baryons in Galaxy Clusters and Groups , 2007, Proceedings of the International Astronomical Union.

[45]  D. Nagai,et al.  Effects of Galaxy Formation on Thermodynamics of the Intracluster Medium , 2007, astro-ph/0703661.

[46]  R. Wechsler,et al.  The Hierarchical Build-Up of Massive Galaxies and the Intracluster Light since z = 1 , 2007, astro-ph/0703374.

[47]  J. Bullock,et al.  Shredded Galaxies as the Source of Diffuse Intrahalo Light on Varying Scales , 2007, astro-ph/0703004.

[48]  R. Nichol,et al.  The Luminosities, Sizes, and Velocity Dispersions of Brightest Cluster Galaxies: Implications for Formation History , 2006, astro-ph/0607117.

[49]  Tod R. Lauer,et al.  The Masses of Nuclear Black Holes in Luminous Elliptical Galaxies and Implications for the Space Density of the Most Massive Black Holes , 2006, astro-ph/0606739.

[50]  R. Davies,et al.  The SAURON project - IV. The mass-to-light ratio, the virial mass estimator and the Fundamental Plane of elliptical and lenticular galaxies , 2005, astro-ph/0505042.

[51]  H. Mo,et al.  Properties of galaxy groups in the Sloan Digital Sky Survey – I. The dependence of colour, star formation and morphology on halo mass , 2005, astro-ph/0509147.

[52]  C. Jones,et al.  ERRATUM: “CHANDRA SAMPLE OF NEARBY RELAXED GALAXY CLUSTERS: MASS, GAS FRACTION, AND MASS–TEMPERATURE RELATION” (2006, ApJ, 640, 691) , 2005, astro-ph/0507092.

[53]  S. White,et al.  Intergalactic stars in z∼ 0.25 galaxy clusters: systematic properties from stacking of Sloan Digital Sky Survey imaging data , 2005, astro-ph/0501194.

[54]  D. Zaritsky,et al.  Intracluster Light in Nearby Galaxy Clusters: Relationship to the Halos of Brightest Cluster Galaxies , 2004, astro-ph/0406244.

[55]  J. Mohr,et al.  K-Band Properties of Galaxy Clusters and Groups: Luminosity Function, Radial Distribution, and Halo Occupation Number , 2004, astro-ph/0402308.

[56]  S. Okamura,et al.  A Comparison of the Galaxy Populations in the Coma and Distant Clusters: The Evolution of k+a Galaxies and the Role of the Intracluster Medium , 2003, astro-ph/0309449.

[57]  J. Mohr,et al.  Near-Infrared Properties of Galaxy Clusters: Luminosity as a Binding Mass Predictor and the State of Cluster Baryons , 2003, astro-ph/0304033.

[58]  A. Zabludoff,et al.  Galaxy Luminosity Functions from Deep Spectroscopic Samples of Rich Clusters , 2003, astro-ph/0304031.

[59]  R. Nichol,et al.  The Galaxy Luminosity Function and Luminosity Density at Redshift z = 0.1 , 2002, astro-ph/0210215.

[60]  I. Smail,et al.  A Low Global Star Formation Rate in the Rich Galaxy Cluster AC 114 at z = 0.32 , 2000, astro-ph/0010505.

[61]  P. Kroupa On the variation of the initial mass function , 2000, astro-ph/0009005.

[62]  G. Bryan Explaining the Entropy Excess in Clusters and Groups of Galaxies without Additional Heating , 2000, astro-ph/0009286.

[63]  R. Carlberg,et al.  The Average Mass and Light Profiles of Galaxy Clusters , 1995, astro-ph/9512087.

[64]  P. Peebles Principles of Physical Cosmology , 1993 .

[65]  Carlos S. Frenk,et al.  Galaxy formation through hierarchical clustering , 1991 .

[66]  E. Salpeter The Luminosity function and stellar evolution , 1955 .