On the existence of universal models

Abstract.Suppose that λ=λ <λ ≥ℵ0, and we are considering a theory T. We give a criterion on T which is sufficient for the consistent existence of λ++ universal models of T of size λ+ for models of T of size ≤λ+, and is meaningful when 2λ +>λ++. In fact, we work more generally with abstract elementary classes. The criterion for the consistent existence of universals applies to various well known theories, such as triangle-free graphs and simple theories. Having in mind possible applications in analysis, we further observe that for such λ, for any fixed μ>λ+ regular with μ=μλ+, it is consistent that 2λ=μ and there is no normed vector space over ℚ of size <μ which is universal for normed vector spaces over ℚ of dimension λ+ under the notion of embedding h which specifies (a,b) such that ||h(x)/||x∈(a,b) for all x.

[1]  Saharon Shelah,et al.  Universal graphs without instances of CH: Revisited , 1990 .

[2]  Alan H. Mekler Universal structures in power ℵ1 , 1990 .

[3]  Jacques Stern Some applications of model theory in Banach space theory , 1976 .

[4]  Chen C. Chang,et al.  Model Theory: Third Edition (Dover Books On Mathematics) By C.C. Chang;H. Jerome Keisler;Mathematics , 1966 .

[5]  Saharon Shelah The Universality Spectrum : Consistency for more Classes , 1994 .

[6]  Saharon Shelah,et al.  A Banach space with few operators , 1978 .

[7]  José Iovino STABLE BANACH SPACES AND BANACH SPACE STRUCTURES, II: FORKING AND COMPACT TOPOLOGIES , 1998 .

[8]  Saharon Shelah,et al.  On universal graphs without instances of CH , 1984, Ann. Pure Appl. Log..

[9]  Saharon Shelah,et al.  Strong negative partition relations below the continuum , 1991 .

[10]  Saharon Shelah Independence Results , 1980, J. Symb. Log..

[11]  W. Szlenk,et al.  The non-existence of a separable reflexive Banach space universal for all separable reflexive Banach spaces , 1968 .

[12]  Saharon Shelah,et al.  Simple unstable theories , 1980 .

[13]  S. Banach,et al.  Théorie des opérations linéaires , 1932 .

[14]  Saharon Shelah,et al.  On universal locally finite groups , 1983 .

[15]  Mirna Dzamonja On uniform Eberlein compacta and c-algebras , 1998 .

[16]  C. Ward Henson Nonstandard hulls of Banach spaces , 1976 .

[17]  J. Krivine,et al.  Sous-espaces de dimension finie des espaces de Banach reticules , 1976 .

[18]  Saharon Shelah,et al.  Nonexistence of universal orders in many cardinals , 1992, Journal of Symbolic Logic.

[19]  S. Shelah,et al.  Non-existence of universals for classes like reduced torsion free abelian groups under embeddings which are not necessarily pure , 1996, Advances in Algebra and Model Theory.

[20]  Saharon Shelah Toward Classifying Unstable Theories , 1996, Ann. Pure Appl. Log..

[21]  S. Shelah,et al.  Annals of Pure and Applied Logic , 1991 .

[22]  Menachem Kojman,et al.  Representing Embeddability as Set Inclusion , 1995, math/9507212.

[23]  S. Todorcevic,et al.  The functor σ²X , 1995 .

[24]  Saharon Shelah Strong Partition Realations Below the Power Set: Consistency Was Sierpinski Right? II. , 1991 .

[25]  Saharon Shelah,et al.  Was Sierpiński right? IV , 1997, Journal of Symbolic Logic.

[26]  JOSÉ IOVINO STABLE BANACH SPACES AND BANACH SPACE STRUCTURES, I: FUNDAMENTALS , 1995 .