Visual evaluation of text features for document summarization and analysis

Thanks to the Web-related and other advanced technologies, textual information is increasingly being stored in digital form and posted online. Automatic methods to analyze such textual information are becoming inevitable. Many of those methods are based on quantitative text features. Analysts face the challenge to choose the most appropriate features for their tasks. This requires effective approaches for evaluation and feature-engineering.

[1]  Anselm Spoerri,et al.  InfoCrystal: a visual tool for information retrieval & management , 1993, CIKM '93.

[2]  Jean-Daniel Fekete,et al.  Compus: visualization and analysis of structured documents for understanding social life in the 16th century , 2000, DL '00.

[3]  Raja Parasuraman,et al.  Fuzzy Signal Detection Theory: Basic Postulates and Formulas for Analyzing Human and Machine Performance , 2000, Hum. Factors.

[4]  Thomas Ball,et al.  Software Visualization in the Large , 1996, Computer.

[5]  A KeimDaniel Information Visualization and Visual Data Mining , 2002 .

[6]  Masaki Murata,et al.  Sentence Extraction System Assembling Multiple Evidence , 2001, NTCIR.

[7]  Ben Shneiderman,et al.  Discovering interesting usage patterns in text collections: integrating text mining with visualization , 2007, CIKM '07.

[8]  Daniel A. Keim,et al.  MailSOM - Visual Exploration of Electronic Mail Archives Using Self-Organizing Maps , 2005 .

[9]  Ben Shneiderman,et al.  The eyes have it: a task by data type taxonomy for information visualizations , 1996, Proceedings 1996 IEEE Symposium on Visual Languages.

[10]  Michalis Vazirgiannis,et al.  c ○ 2001 Kluwer Academic Publishers. Manufactured in The Netherlands. On Clustering Validation Techniques , 2022 .

[11]  Geoffrey Sampson,et al.  The Oxford Handbook of Computational Linguistics , 2003, Lit. Linguistic Comput..

[12]  Philip S. Yu,et al.  A holistic lexicon-based approach to opinion mining , 2008, WSDM '08.

[13]  Timo Honkela,et al.  Self-Organizing Maps of Document Collections: A New Approach to Interactive Exploration , 1996, KDD.

[14]  Hiroshi Motoda,et al.  Feature Selection for Knowledge Discovery and Data Mining , 1998, The Springer International Series in Engineering and Computer Science.

[15]  Hsinchun Chen,et al.  Categorization and analysis of text in computer mediated communication archives using visualization , 2007, JCDL '07.

[16]  Robert R. Korfhage,et al.  To see, or not to see— is That the query? , 1991, SIGIR '91.

[17]  Marti A. Hearst TileBars: visualization of term distribution information in full text information access , 1995, CHI '95.

[18]  Daniel A. Keim,et al.  Information Visualization and Visual Data Mining , 2002, IEEE Trans. Vis. Comput. Graph..

[19]  Ronen Feldman,et al.  The Text Mining Handbook: Index , 2006 .

[20]  Dunja Mladenic,et al.  Visualization of Text Document Corpus , 2005, Informatica.

[21]  Hans Peter Luhn,et al.  The Automatic Creation of Literature Abstracts , 1958, IBM J. Res. Dev..

[22]  Mark T. Maybury,et al.  Automatic Summarization , 2002, Computational Linguistics.

[23]  James J. Thomas,et al.  Visualizing the non-visual: spatial analysis and interaction with information from text documents , 1995, Proceedings of Visualization 1995 Conference.

[24]  Daniel A. Keim,et al.  An Image-Based Approach to Visual Feature Space Analysis , 2008, WSCG 2008.

[25]  Daniel A. Keim,et al.  Literature Fingerprinting: A New Method for Visual Literary Analysis , 2007, 2007 IEEE Symposium on Visual Analytics Science and Technology.