Efficient quantum walk on the grid with multiple marked elements

We give a quantum algorithm for finding a marked element on the grid when there are multiple marked elements. Our algorithm uses quadratically fewer steps than a random walk on the grid, ignoring logarithmic factors. This is the first known quantum walk that finds a marked element in a number of steps less than the square-root of the extended hitting time. We also give a new tighter upper bound on the extended hitting time of a marked subset, expressed in terms of the hitting times of its members.

[1]  Leslie G. Valiant,et al.  NP is as easy as detecting unique solutions , 1985, STOC '85.

[2]  Andris Ambainis,et al.  Search by Quantum Walks on Two-Dimensional Grid without Amplitude Amplification , 2012, TQC.

[3]  Gilles Brassard,et al.  Quantum Counting , 1998, ICALP.

[4]  François Le Gall,et al.  Improved Quantum Algorithm for Triangle Finding via Combinatorial Arguments , 2014, 2014 IEEE 55th Annual Symposium on Foundations of Computer Science.

[5]  G. Brassard,et al.  Quantum Amplitude Amplification and Estimation , 2000, quant-ph/0005055.

[6]  Andris Ambainis,et al.  Spatial search on grids with minimum memory , 2013, Quantum Inf. Comput..

[7]  Andris Ambainis,et al.  Coins make quantum walks faster , 2004, SODA '05.

[8]  Nikolajs Nahimovs,et al.  Adjacent Vertices Can be Hard to Find by Quantum Walks , 2016, SOFSEM.

[9]  Gilles Brassard,et al.  Strengths and Weaknesses of Quantum Computing , 1997, SIAM J. Comput..

[10]  Andrew M. Childs,et al.  Spatial search by continuous-time quantum walks on crystal lattices , 2014, 1403.2676.

[11]  Frédéric Magniez,et al.  Quantum algorithms for the triangle problem , 2005, SODA '05.

[12]  Andris Ambainis,et al.  Quantum search of spatial regions , 2003, 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings..

[13]  Alexei Y. Kitaev,et al.  Quantum measurements and the Abelian Stabilizer Problem , 1995, Electron. Colloquium Comput. Complex..

[14]  Seth Lloyd,et al.  Quantum Information Processing , 2009, Encyclopedia of Complexity and Systems Science.

[15]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[16]  Nikolajs Nahimovs,et al.  Quantum Walks on Two-Dimensional Grids with Multiple Marked Locations , 2015, SOFSEM.

[17]  D. Meyer,et al.  Connectivity is a poor indicator of fast quantum search. , 2014, Physical review letters.

[18]  Peter Høyer,et al.  Controlled Quantum Amplification , 2017, ICALP.

[19]  Stacey Jeffery,et al.  Time-Efficient Quantum Walks for 3-Distinctness , 2013, ICALP.

[20]  Julia Kempe,et al.  Quantum random walks: An introductory overview , 2003, quant-ph/0303081.

[21]  Salvador Elías Venegas-Andraca,et al.  Quantum walks: a comprehensive review , 2012, Quantum Information Processing.

[22]  Stacey Jeffery,et al.  A Time-Efficient Quantum Walk for 3-Distinctness Using Nested Updates , 2013, ArXiv.

[23]  R. Cleve,et al.  Quantum fingerprinting. , 2001, Physical review letters.

[24]  Frédéric Magniez,et al.  Search via quantum walk , 2006, STOC '07.

[25]  Frédéric Magniez,et al.  An $O(n^{1.3})$ Quantum Algorithm for the Triangle Problem , 2003 .

[26]  Maris Ozols,et al.  Quantum Walks Can Find a Marked Element on Any Graph , 2010, Algorithmica.

[27]  Avatar Tulsi,et al.  Faster quantum-walk algorithm for the two-dimensional spatial search , 2008, 0801.0497.

[28]  H. Krovi,et al.  Adiabatic condition and the quantum hitting time of Markov chains , 2010, 1004.2721.

[29]  Ashwin Nayak,et al.  Quantum Analogues of Markov Chains , 2016, Encyclopedia of Algorithms.

[30]  Griffiths,et al.  Semiclassical Fourier transform for quantum computation. , 1995, Physical review letters.

[31]  Andris Ambainis,et al.  QUANTUM WALKS AND THEIR ALGORITHMIC APPLICATIONS , 2003, quant-ph/0403120.

[32]  R. Cleve,et al.  Quantum algorithms revisited , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[33]  Frédéric Magniez,et al.  Quantum Complexity of Testing Group Commutativity , 2005, Algorithmica.

[34]  Andris Ambainis,et al.  Quantum walk algorithm for element distinctness , 2003, 45th Annual IEEE Symposium on Foundations of Computer Science.

[35]  Frédéric Magniez,et al.  On the Hitting Times of Quantum Versus Random Walks , 2008, Algorithmica.

[36]  M. Szegedy,et al.  Quantum Walk Based Search Algorithms , 2008, TAMC.