Probabilistic liquefaction risk analysis including fuzzy variables

Abstract A new method of probabilistic liquefaction risk analysis is developed. The variables whose effect on the process of liquefaction are known vaguely and described only through imprecise linguistic terms, are treated as fuzzy variables. The combined effect of the fuzzy variables is introduced into a basic model of transformed into a random variable. The probability of liquefaction is then formulated in the usual framework of probabilistic risk analysis. Illustrative example analyses are also presented.

[1]  Fabrizio Luccio,et al.  Some aspects of the recognition of convex polyhedra from two plane projections. I , 1970, Inf. Sci..

[2]  M. S. Rahman,et al.  Liquefaction Risk Assessment: Evaluation of Three Statistical Models , 1996 .

[3]  F. S. Wong,et al.  Fuzzy weighted averages and implementation of the extension principle , 1987 .

[4]  Achintya Haldar,et al.  PROBABILISTIC EVALUATION OF LIQUEFACTION POTENTIAL , 1979 .

[5]  C. Cornell Engineering seismic risk analysis , 1968 .

[6]  John W. Seaman,et al.  The efficacy of fuzzy representations of uncertainty , 1994, IEEE Trans. Fuzzy Syst..

[7]  Sia Nemat-Nasser,et al.  A unified approach to densification and liquefaction of cohesionless sand in cyclic shearing , 1979 .

[8]  Michael N. Fardis,et al.  Probabilistic Analysis of Deposit Liquefaction , 1982 .

[9]  Edward Kavazanjian,et al.  Liquefaction Potential Mapping for San Francisco , 1985 .

[10]  Michio Sugeno,et al.  Fuzzy systems theory and its applications , 1991 .

[11]  Tai-Yan Kam,et al.  Updating Parameters with Fuzzy Entropies , 1983 .

[12]  M. K. Yegian,et al.  Probabilistic analysis for liquefaction , 1981 .

[13]  Abraham Kandel,et al.  Discussion: On the Very Real Distinction Between Fuzzy and Statistical Methods , 1995 .

[14]  Peter W. Mullarkey,et al.  Fuzzy logic in a geotechnical knowledge-based system: CONE , 1986 .

[15]  J. B. Berrill,et al.  ENERGY DISSIPATION AND SEISMIC LIQUEFACTION OF SANDS : REVISED MODEL , 1985 .

[16]  Enric Trillas,et al.  Entropies in finite fuzzy sets , 1978, Inf. Sci..

[17]  Jean-Lou Chameau,et al.  Probabilistic Pore Pressure Analysis for Seismic Loading , 1983 .

[18]  L. Zadeh Discussion: probability theory and fuzzy logic are complementary rather than competitive , 1995 .

[19]  Achintya Haldar,et al.  A random-fuzzy analysis of existing structures , 1992 .

[20]  J. L. Chameau,et al.  Performance Evaluation in Geotechnical Engineering Using Fuzzy Sets , 1984 .

[21]  M. K. Yegian,et al.  Analysis for Liquefaction: Empirical Approach , 1981 .

[22]  Wilson H. Tang,et al.  Probability concepts in engineering planning and design , 1984 .

[23]  W. Woodall,et al.  A probabilistic and statistical view of fuzzy methods , 1995 .

[24]  Settimo Termini,et al.  A Definition of a Nonprobabilistic Entropy in the Setting of Fuzzy Sets Theory , 1972, Inf. Control..

[25]  Settimo Termini,et al.  Entropy of L-Fuzzy Sets , 1974, Inf. Control..

[26]  Kurt J. Schmucker,et al.  Fuzzy Sets, Natural Language Computations, and Risk Analysis , 1983 .

[27]  Didier Dubois,et al.  Fuzzy sets-a convenient fiction for modeling vagueness and possibility , 1994, IEEE Trans. Fuzzy Syst..

[28]  R. Yager,et al.  On the issue of defuzzification and selection based on a fuzzy set , 1993 .

[29]  Colin B. Brown Entropy Constructed Probabilities , 1980 .

[30]  Nic Wilson,et al.  Vagueness and Bayesian probability , 1994, IEEE Trans. Fuzzy Syst..

[31]  R. Whitman,et al.  Risk Analysis for Ground Failure by Liquefaction , 1978 .

[32]  George J. Klir,et al.  Fuzzy sets, uncertainty and information , 1988 .

[33]  W. D. Liam Finn,et al.  Simple Computation of Liquefaction Probability for Seismic Hazard Applications , 1984 .