Equivalence of Quantum Heat Machines, and Quantum-Thermodynamic Signatures

Heat machines on the atomic scale are surprisingly similar to their macroscopic classical counterparts. Theorists show that all different engine types become thermodynamically equivalent in the quantum regime.

[1]  Armen E Allahverdyan,et al.  Optimal refrigerator. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[2]  E. Sudarshan,et al.  Completely Positive Dynamical Semigroups of N Level Systems , 1976 .

[3]  V. Buzek,et al.  Simulation of indivisible qubit channels in collision models , 2012, 1202.6315.

[4]  Johan Aberg,et al.  The thermodynamic meaning of negative entropy , 2011, Nature.

[5]  Robert Alicki,et al.  The quantum open system as a model of the heat engine , 1979 .

[6]  V. Vedral,et al.  Emergent thermodynamics in a quenched quantum many-body system. , 2012, Physical review letters.

[7]  Jochen Gemmer,et al.  Quantum Thermodynamic Processes , 2009 .

[8]  Kavan Modi,et al.  Quantacell: powerful charging of quantum batteries , 2015, 1503.07005.

[9]  Michael J. W. Hall,et al.  Finding the Kraus decomposition from a master equation and vice versa , 2007, 0801.4100.

[10]  Relaxation due to random collisions with a many-qudit environment , 2008, 0811.3581.

[11]  A. J. Short,et al.  Clock-driven quantum thermal engines , 2014, 1412.1338.

[12]  Gerardo Adesso,et al.  Quantum-enhanced absorption refrigerators , 2013, Scientific Reports.

[13]  Mário Ziman,et al.  Description of Quantum Dynamics of Open Systems Based on Collision-Like Models , 2004, Open Syst. Inf. Dyn..

[14]  Farrokh Vatan,et al.  Algorithmic cooling and scalable NMR quantum computers , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[15]  C. Lubich,et al.  Error Bounds for Exponential Operator Splittings , 2000 .

[16]  T. Rudolph,et al.  Quantum coherence, time-translation symmetry and thermodynamics , 2014, 1410.4572.

[17]  Cyclic cooling algorithm , 2007, quant-ph/0702071.

[18]  Mark Fannes,et al.  Entanglement boost for extractable work from ensembles of quantum batteries. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  G. Kurizki,et al.  Work and energy gain of heat-pumped quantized amplifiers , 2013, 1306.1472.

[20]  M. Feit,et al.  Solution of the Schrödinger equation by a spectral method , 1982 .

[21]  Ronnie Kosloff,et al.  Discrete four-stroke quantum heat engine exploring the origin of friction. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  Gershon Kurizki,et al.  Thermodynamics of quantum systems under dynamical control , 2015, 1503.01195.

[23]  E. Davies,et al.  Markovian master equations , 1974 .

[24]  P. Salamon,et al.  Principles of control thermodynamics , 2001 .

[25]  Robert S. Whitney,et al.  Most efficient quantum thermoelectric at finite power output. , 2013, Physical review letters.

[26]  Ronnie Kosloff,et al.  A quantum mechanical open system as a model of a heat engine , 1984 .

[27]  M. Horodecki,et al.  Fundamental limitations for quantum and nanoscale thermodynamics , 2011, Nature Communications.

[28]  J. Rossnagel,et al.  Nanoscale heat engine beyond the Carnot limit. , 2013, Physical review letters.

[29]  B. Andresen Current trends in finite-time thermodynamics. , 2011, Angewandte Chemie.

[30]  Ronnie Kosloff,et al.  Quantum lubrication: suppression of friction in a first-principles four-stroke heat engine. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[32]  M. Paternostro,et al.  More bang for your buck: Super-adiabatic quantum engines , 2013, Scientific Reports.

[33]  J Eisert,et al.  Cooling by heating: very hot thermal light can significantly cool quantum systems. , 2011, Physical review letters.

[34]  M. Greiner,et al.  Orbital excitation blockade and algorithmic cooling in quantum gases , 2011, Nature.

[35]  R. Laflamme,et al.  Experimental implementation of heat-bath algorithmic cooling using solid-state nuclear magnetic resonance , 2005, Nature.

[36]  Resources needed for non-unitary quantum operations , 2012, 1212.4584.

[37]  Leonard J. Schulman,et al.  Physical Limits of Heat-Bath Algorithmic Cooling , 2005, SIAM J. Comput..

[38]  Ronnie Kosloff,et al.  Irreversible performance of a quantum harmonic heat engine , 2006 .

[39]  Hans De Raedt,et al.  Product formula algorithms for solving the time dependent Schrödinger equation , 1987 .

[40]  Peter Hänggi,et al.  Fluctuation theorem for arbitrary open quantum systems. , 2009, Physical review letters.

[41]  J. Anders,et al.  Thermodynamics of discrete quantum processes , 2012, 1211.0183.

[42]  Geva,et al.  Three-level quantum amplifier as a heat engine: A study in finite-time thermodynamics. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[43]  K. Southwell Quantum coherence , 2008, Nature.

[44]  J. Pekola,et al.  Information entropic superconducting microcooler , 2007, 0704.0845.

[45]  Susana F. Huelga,et al.  Markovian master equations: a critical study , 2010, 1006.4666.

[46]  A. J. Short,et al.  Work extraction and thermodynamics for individual quantum systems , 2013, Nature Communications.

[47]  F. Curzon,et al.  Efficiency of a Carnot engine at maximum power output , 1975 .

[48]  R Fazio,et al.  Extracting quantum work statistics and fluctuation theorems by single-qubit interferometry. , 2013, Physical review letters.

[49]  J. Eisert,et al.  Thermalization in nature and on a quantum computer. , 2011, Physical review letters.

[50]  Feldmann,et al.  Performance of discrete heat engines and heat pumps in finite time , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[51]  Franco Nori,et al.  Quantum thermodynamic cycles and quantum heat engines. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[52]  Gerardo Adesso,et al.  Performance bound for quantum absorption refrigerators. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[53]  Javier Prior,et al.  Coherence-assisted single-shot cooling by quantum absorption refrigerators , 2015, 1504.01593.

[54]  R. Zambrini,et al.  Irreversible work and inner friction in quantum thermodynamic processes. , 2014, Physical review letters.

[55]  Robert Alicki,et al.  Quantum Thermodynamics: An Example of Two-Level Quantum Machine , 2014, Open Syst. Inf. Dyn..

[56]  Fernando Casas,et al.  On the necessity of negative coefficients for operator splitting schemes of order higher than two , 2005 .

[57]  Entanglement dynamics and relaxation in a few-qubit system interacting with random collisions , 2008, 0801.1414.

[58]  G. Kurizki,et al.  Quantum bath refrigeration towards absolute zero: challenging the unattainability principle. , 2012, Physical review letters.

[59]  E. Lutz,et al.  All-optical nanomechanical heat engine. , 2014, Physical review letters.

[60]  E. O. Schulz-DuBois,et al.  Three-Level Masers as Heat Engines , 1959 .

[61]  I. I. Novikov The efficiency of atomic power stations (a review) , 1958 .

[62]  A. E. Allahverdyan,et al.  Maximal work extraction from finite quantum systems , 2004 .

[63]  R. Kosloff,et al.  The multilevel four-stroke swap engine and its environment , 2014, 1404.6182.

[64]  Timothy F. Havel Robust procedures for converting among Lindblad, Kraus and matrix representations of quantum dynamical semigroups , 2002, quant-ph/0201127.

[65]  P. Talkner,et al.  Colloquium: Quantum fluctuation relations: Foundations and applications , 2010, 1012.2268.

[66]  J. Åberg Catalytic coherence. , 2013, Physical Review Letters.

[67]  Ronnie Kosloff,et al.  Quantum Thermodynamics: A Dynamical Viewpoint , 2013, Entropy.

[68]  R. Kosloff,et al.  Universal features in the efficiency at maximal work of hot quantum Otto engines , 2014, 1406.6788.

[69]  Marlan O Scully,et al.  Extracting work from a single heat bath via vanishing quantum coherence. , 2002, Science.

[70]  Massimiliano Esposito,et al.  Universality of efficiency at maximum power. , 2009, Physical review letters.

[71]  K. Modi,et al.  Quantum thermodynamics of general quantum processes. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[72]  Keye Zhang,et al.  Quantum optomechanical heat engine. , 2014, Physical review letters.

[73]  J. Eisert,et al.  Probing the relaxation towards equilibrium in an isolated strongly correlated one-dimensional Bose gas , 2011, Nature Physics.

[74]  Shaul Mukamel,et al.  Heat fluctuations and coherences in a quantum heat engine , 2012 .

[75]  Marlan O Scully,et al.  Quantum heat engine power can be increased by noise-induced coherence , 2011, Proceedings of the National Academy of Sciences.

[76]  Daniel A. Lidar,et al.  Distance bounds on quantum dynamics , 2008, 0803.4268.

[77]  Ronnie Kosloff,et al.  Optimal performance of reciprocating demagnetization quantum refrigerators. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[78]  Ronnie Kosloff,et al.  The local approach to quantum transport may violate the second law of thermodynamics , 2014, 1402.3825.

[79]  J. Pekola,et al.  Nonequilibrium fluctuations in quantum heat engines: theory, example, and possible solid state experiments , 2014, 1412.0898.

[80]  Paul Skrzypczyk,et al.  How small can thermal machines be? The smallest possible refrigerator. , 2009, Physical review letters.

[81]  David Jennings,et al.  Description of quantum coherence in thermodynamic processes requires constraints beyond free energy , 2014, Nature Communications.

[82]  S. Mukamel,et al.  Quantum heat engines: A thermodynamic analysis of power and efficiency , 2012 .

[83]  Ronnie Kosloff,et al.  Quantum heat engines and refrigerators: continuous devices. , 2013, Annual review of physical chemistry.

[84]  M. Campisi Fluctuation relation for quantum heat engines and refrigerators , 2014, 1403.8040.

[85]  Ronnie Kosloff,et al.  The quantum heat engine and heat pump: An irreversible thermodynamic analysis of the three-level amplifier , 1996 .

[86]  J. Rossnagel,et al.  Single-ion heat engine at maximum power. , 2012, Physical review letters.

[87]  H. Spohn Entropy production for quantum dynamical semigroups , 1978 .

[88]  Antonio Acín,et al.  Entanglement generation is not necessary for optimal work extraction. , 2013, Physical review letters.

[89]  S. Mukamel Principles of Nonlinear Optical Spectroscopy , 1995 .

[90]  A. Nitzan,et al.  Molecular heat pump. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[91]  Ronnie Kosloff,et al.  A quantum-mechanical heat engine operating in finite time. A model consisting of spin-1/2 systems as the working fluid , 1992 .

[92]  Davide Venturelli,et al.  Minimal self-contained quantum refrigeration machine based on four quantum dots. , 2012, Physical review letters.

[93]  F. Rempp,et al.  Quantum thermodynamic Otto machines: A spin-system approach , 2007 .

[94]  N. Moiseyev,et al.  Time-dependent Hamiltonians with 100% evolution speed efficiency , 2012, 1207.5373.

[95]  G. Lindblad On the generators of quantum dynamical semigroups , 1976 .