MFN2 suppresses clear cell renal cell carcinoma progression by modulating mitochondria‐dependent dephosphorylation of EGFR

Clear cell renal cell carcinoma (ccRCC) is the most lethal renal cancer. An overwhelming increase of patients experience tumor progression and unfavorable prognosis. However, the molecular events underlying ccRCC tumorigenesis and metastasis remain unclear. Therefore, uncovering the underlying mechanisms will pave the way for developing novel therapeutic targets for ccRCC. In this study, we sought to investigate the role of mitofusin‐2 (MFN2) in supressing ccRCC tumorigenesis and metastasis.

[1]  Z. Zeng,et al.  A Positive Feedback Loop between Inactive VHL-Triggered Histone Lactylation and PDGFRβ Signaling Drives Clear Cell Renal Cell Carcinoma Progression , 2022, International journal of biological sciences.

[2]  R. Deng,et al.  Fis1 phosphorylation by Met promotes mitochondrial fission and hepatocellular carcinoma metastasis , 2021, Signal Transduction and Targeted Therapy.

[3]  C. Kraft,et al.  Quantitative high-confidence human mitochondrial proteome and its dynamics in cellular context , 2021, Cell metabolism.

[4]  Ruihua Xu,et al.  Cancer incidence, mortality, and burden in China: a time‐trend analysis and comparison with the United States and United Kingdom based on the global epidemiological data released in 2020 , 2021, Cancer communications.

[5]  V. Margulis,et al.  Deletion of Lats1/2 in adult kidney epithelia leads to renal cell carcinoma. , 2021, The Journal of clinical investigation.

[6]  A. Jemal,et al.  Cancer Statistics, 2021 , 2021, CA: a cancer journal for clinicians.

[7]  Alexander R. Pico,et al.  WikiPathways: connecting communities , 2020, Nucleic Acids Res..

[8]  Junjie Hu,et al.  Mitochondrial Fusion: The Machineries In and Out. , 2020, Trends in cell biology.

[9]  M. Aepfelbacher,et al.  Cargo-specific recruitment in clathrin and dynamin-independent endocytosis , 2020, bioRxiv.

[10]  W. Kaelin,et al.  Targeting the HIF2–VEGF axis in renal cell carcinoma , 2020, Nature Medicine.

[11]  Yuanzhong Wu,et al.  RAB31 marks and controls an ESCRT-independent exosome pathway , 2020, Cell Research.

[12]  Yi Hao,et al.  VHL-HIF-2α axis-induced SMYD3 upregulation drives renal cell carcinoma progression via direct trans-activation of EGFR , 2020, Oncogene.

[13]  L. Sequist,et al.  Osimertinib plus savolitinib in patients with EGFR mutation-positive, MET-amplified, non-small-cell lung cancer after progression on EGFR tyrosine kinase inhibitors: interim results from a multicentre, open-label, phase 1b study. , 2020, The Lancet. Oncology.

[14]  Huanjie Shao,et al.  AIM2 promotes the development of non-small cell lung cancer by modulating mitochondrial dynamics , 2020, Oncogene.

[15]  D. Chan,et al.  Structural insights of human mitofusin-2 into mitochondrial fusion and CMT2A onset , 2019, Nature Communications.

[16]  C. Porta,et al.  Nivolumab plus ipilimumab versus sunitinib in first-line treatment for advanced renal cell carcinoma: extended follow-up of efficacy and safety results from a randomised, controlled, phase 3 trial. , 2019, The Lancet. Oncology.

[17]  M. Orozco,et al.  Deficient Endoplasmic Reticulum-Mitochondrial Phosphatidylserine Transfer Causes Liver Disease , 2019, Cell.

[18]  Yiguo Wang,et al.  PKM2 coordinates glycolysis with mitochondrial fusion and oxidative phosphorylation , 2019, Protein & Cell.

[19]  Shuhan Sun,et al.  Long noncoding RNA EGFR-AS1 promotes cell growth and metastasis via affecting HuR mediated mRNA stability of EGFR in renal cancer , 2019, Cell Death & Disease.

[20]  J. Paty,et al.  Patient-reported outcomes of patients with advanced renal cell carcinoma treated with nivolumab plus ipilimumab versus sunitinib (CheckMate 214): a randomised, phase 3 trial. , 2019, The Lancet. Oncology.

[21]  Christopher D. Brown,et al.  Renal compartment-specific genetic variation analyses identify new pathways in chronic kidney disease , 2018, Nature Medicine.

[22]  W. Rathmell,et al.  Epigenetic modifiers: activities in renal cell carcinoma , 2018, Nature Reviews Urology.

[23]  J. Reeves,et al.  Clinical activity and molecular correlates of response to atezolizumab alone or in combination with bevacizumab versus sunitinib in renal cell carcinoma , 2018, Nature Medicine.

[24]  Jun‐hang Luo,et al.  RIN1 promotes renal cell carcinoma malignancy by activating EGFR signaling through Rab25 , 2017, Cancer science.

[25]  Charles Swanton,et al.  Renal cell carcinoma , 2017, Nature Reviews Disease Primers.

[26]  D. Chan,et al.  Mfn1 structures reveal nucleotide-triggered dimerization critical for mitochondrial fusion , 2017, Nature.

[27]  A. Mason,et al.  Endosome–mitochondria interactions are modulated by iron release from transferrin , 2016, The Journal of cell biology.

[28]  L. Scorrano,et al.  Mitofusins, from Mitochondria to Metabolism. , 2016, Molecular cell.

[29]  Umberto Capitanio,et al.  Renal Cancer , 2011 .

[30]  R. Montironi,et al.  Metabolic alterations in renal cell carcinoma. , 2015, Cancer treatment reviews.

[31]  B. Goud,et al.  Integrin endosomal signalling suppresses anoikis , 2015, Nature Cell Biology.

[32]  K. Hoehn,et al.  Erk2 phosphorylation of Drp1 promotes mitochondrial fission and MAPK-driven tumor growth. , 2015, Molecular cell.

[33]  C. Futter,et al.  EGF receptor trafficking: consequences for signaling and cancer , 2014, Trends in cell biology.

[34]  S. Archer Mitochondrial dynamics--mitochondrial fission and fusion in human diseases. , 2013, The New England journal of medicine.

[35]  M. Miączyńska Effects of membrane trafficking on signaling by receptor tyrosine kinases. , 2013, Cold Spring Harbor perspectives in biology.

[36]  A. Sorkin,et al.  Endocytosis of receptor tyrosine kinases. , 2013, Cold Spring Harbor perspectives in biology.

[37]  Na Liu,et al.  Role of epidermal growth factor receptor in acute and chronic kidney injury , 2013, Kidney international.

[38]  A. M. van der Bliek,et al.  Mitochondrial Fission, Fusion, and Stress , 2012, Science.

[39]  A. Kiger,et al.  Coordination between RAB GTPase and phosphoinositide regulation and functions , 2012, Nature Reviews Molecular Cell Biology.

[40]  Chunxiao Liu,et al.  Rab21 attenuates EGF-mediated MAPK signaling through enhancing EGFR internalization and degradation. , 2012, Biochemical and biophysical research communications.

[41]  K. Lim,et al.  Mitochondrial dynamics and Parkinson's disease: focus on parkin. , 2012, Antioxidants and Redox Signaling.

[42]  E. D. Robertis,et al.  Endocytic control of growth factor signalling: multivesicular bodies as signalling organelles , 2011, Nature Reviews Molecular Cell Biology.

[43]  M. Rao,et al.  Activation of Multiple Proto-oncogenic Tyrosine Kinases in Breast Cancer via Loss of the PTPN12 Phosphatase , 2011, Cell.

[44]  J. Tostain,et al.  Carbonic anhydrase 9 in clear cell renal cell carcinoma: a marker for diagnosis, prognosis and treatment. , 2010, European journal of cancer.

[45]  N. Mizushima,et al.  Autophagy in mammalian development and differentiation , 2010, Nature Cell Biology.

[46]  C. Futter,et al.  Membrane contacts between endosomes and ER provide sites for PTP1B–epidermal growth factor receptor interaction , 2010, Nature Cell Biology.

[47]  Xiongwei Zhu,et al.  Abnormal Mitochondrial Dynamics—A Novel Therapeutic Target for Alzheimer's Disease? , 2010, Molecular Neurobiology.

[48]  P. Mischel,et al.  An Unbiased Screen Identifies DEP-1 Tumor Suppressor as a Phosphatase Controlling EGFR Endocytosis , 2009, Current Biology.

[49]  T. Miyake,et al.  Epidermal Growth Factor Receptor Translocation to the Mitochondria , 2009, The Journal of Biological Chemistry.

[50]  M. Scott,et al.  Rab35 Controls Actin Bundling by Recruiting Fascin as an Effector Protein , 2009, Science.

[51]  H. Stenmark Rab GTPases as coordinators of vesicle traffic , 2009, Nature Reviews Molecular Cell Biology.

[52]  A. McClatchey,et al.  Aberrant epithelial morphology and persistent epidermal growth factor receptor signaling in a mouse model of renal carcinoma , 2009, Proceedings of the National Academy of Sciences.

[53]  W. Kaelin The von Hippel–Lindau tumour suppressor protein: O2 sensing and cancer , 2008, Nature Reviews Cancer.

[54]  W. Kassouf Editorial comment on: Von Hippel-Lindau tumor suppressor gene loss in renal cell carcinoma promotes oncogenic epidermal growth factor receptor signaling via Akt-1 and MEK-1. , 2008, European urology.

[55]  Frank Pétavy,et al.  Lapatinib versus hormone therapy in patients with advanced renal cell carcinoma: a randomized phase III clinical trial. , 2008, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[56]  Xuejun Jiang,et al.  Mitochondrially localized EGFR is subjected to autophagic regulation and implicated in cell survival , 2008, Autophagy.

[57]  Y. Yarden,et al.  SnapShot: EGFR Signaling Pathway , 2007, Cell.

[58]  Isabelle Robert,et al.  Translational up-regulation of the EGFR by tumor hypoxia provides a nonmutational explanation for its overexpression in human cancer , 2007, Proceedings of the National Academy of Sciences.

[59]  B. Kennedy,et al.  Protein tyrosine phosphatase 1B deficiency or inhibition delays ErbB2-induced mammary tumorigenesis and protects from lung metastasis , 2007, Nature Genetics.

[60]  James Brugarolas,et al.  Renal-cell carcinoma--molecular pathways and therapies. , 2007, The New England journal of medicine.

[61]  A. Östman,et al.  DEP-1 protein tyrosine phosphatase inhibits proliferation and migration of colon carcinoma cells and is upregulated by protective nutrients , 2006, Oncogene.

[62]  T. Roskams,et al.  Emerging role of tyrosine kinase inhibitors in the treatment of advanced renal cell cancer: a review. , 2006, Annals of Oncology.

[63]  H. Bennett,et al.  A role for the small GTPase Rab21 in the early endocytic pathway , 2004, Journal of Cell Science.

[64]  Masahiro Fukuoka,et al.  Gefitinib — a novel targeted approach to treating cancer , 2004, Nature Reviews Cancer.

[65]  Corinne Silva,et al.  Phosphorylation of Y845 on the Epidermal Growth Factor Receptor Mediates Binding to the Mitochondrial Protein Cytochrome c Oxidase Subunit II , 2004, Molecular and Cellular Biology.

[66]  M. Pericak-Vance,et al.  Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A , 2004, Nature Genetics.

[67]  G. Meijer,et al.  LOH of PTPRJ occurs early in colorectal cancer and is associated with chromosomal loss of 18q12–21 , 2003, Oncogene.

[68]  G. Carpenter The EGF receptor: a nexus for trafficking and signaling , 2000, BioEssays : news and reviews in molecular, cellular and developmental biology.

[69]  S. Schmid,et al.  Regulation of signal transduction by endocytosis. , 2000, Current opinion in cell biology.

[70]  D. Nam,et al.  Application of single-cell RNA sequencing in optimizing a combinatorial therapeutic strategy in metastatic renal cell carcinoma , 2016, Genome Biology.

[71]  P. Chinnery,et al.  Disturbed mitochondrial dynamics and neurodegenerative disorders , 2015, Nature Reviews Neurology.

[72]  T. Pellinen,et al.  Negative regulation of EGFR signalling through integrin-α1β1-mediated activation of protein tyrosine phosphatase TCPTP , 2005, Nature Cell Biology.

[73]  T. Pellinen,et al.  Negative regulation of EGFR signalling through integrin-alpha1beta1-mediated activation of protein tyrosine phosphatase TCPTP. , 2005, Nature cell biology.

[74]  M. Karno,et al.  Renal cell carcinoma. , 1956, Bulletin. Tufts-New England Medical Center.