GPU-based Real-time Discrete Euclidean Distance Transforms with Precise Error Bounds

We present a discrete distance transform in style of the vector propagation algorithm by Danielsson. Like other vector propagation algorithms, the proposed method is close to exact, i.e., the error can be strictly bounded from above and is significantly smaller than one pixel. Our contribution is that the algorithm runs entirely on consumer class graphics hardware, thereby achieving a throughput of up to 96 Mpixels/s. This allows the proposed method to be used in a wide range of applications that rely both on high speed and high quality.

[1]  James C. Mullikin,et al.  The vector distance transform in two and three dimensions , 1992, CVGIP Graph. Model. Image Process..

[2]  Markus H. Gross,et al.  Signed distance transform using graphics hardware , 2003, IEEE Visualization, 2003. VIS 2003..

[3]  O. Cuisenaire Distance transformations: fast algorithms and applications to medical image processing , 1999 .

[4]  Jakob Andreas Bærentzen,et al.  3D distance fields: a survey of techniques and applications , 2006, IEEE Transactions on Visualization and Computer Graphics.

[5]  Robert Strzodka,et al.  Generalized distance transforms and skeletons in graphics hardware , 2004, VISSYM'04.

[6]  Petros Maragos,et al.  Optimum design of chamfer distance transforms , 1998, IEEE Trans. Image Process..

[7]  Dinesh Manocha,et al.  DiFi: Fast 3D Distance Field Computation Using Graphics Hardware , 2004, Comput. Graph. Forum.

[8]  Phillip Colella,et al.  Two new methods for simulating photolithography development in 3D , 1996, Advanced Lithography.

[9]  Steven Fortune,et al.  A sweepline algorithm for Voronoi diagrams , 1986, SCG '86.

[10]  Georges Voronoi Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Deuxième mémoire. Recherches sur les parallélloèdres primitifs. , 1908 .

[11]  D. Meiron,et al.  Efficient algorithms for solving static hamilton-jacobi equations , 2003 .

[12]  Calvin R. Maurer,et al.  A Linear Time Algorithm for Computing Exact Euclidean Distance Transforms of Binary Images in Arbitrary Dimensions , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  Mark W. Jones,et al.  Vector-City Vector Distance Transform , 2001, Comput. Vis. Image Underst..

[14]  J A Sethian,et al.  A fast marching level set method for monotonically advancing fronts. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[15]  Atsuyuki Okabe,et al.  Spatial Tessellations: Concepts and Applications of Voronoi Diagrams , 1992, Wiley Series in Probability and Mathematical Statistics.

[16]  J. Olsen Realtime Procedural Terrain Generation , 2004 .

[17]  Dinesh Manocha,et al.  Fast computation of generalized Voronoi diagrams using graphics hardware , 1999, SIGGRAPH.

[18]  Azriel Rosenfeld,et al.  Sequential Operations in Digital Picture Processing , 1966, JACM.

[19]  J. Tsitsiklis,et al.  Efficient algorithms for globally optimal trajectories , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[20]  Stina Svensson,et al.  Digital Distance Transforms in 3D Images Using Information from Neighbourhoods up to 5×5×5 , 2002, Comput. Vis. Image Underst..

[21]  Markus Oswald Denny,et al.  Algorithmic geometry via graphics hardware , 2003 .

[22]  Alexandru Telea,et al.  An Augmented Fast Marching Method for Computing Skeletons and Centerlines , 2002, VisSym.

[23]  Tiow Seng Tan,et al.  Jump flooding in GPU with applications to Voronoi diagram and distance transform , 2006, I3D '06.

[24]  P. Danielsson Euclidean distance mapping , 1980 .