Permanence criteria in non-autonomous predator–prey Kolmogorov systems and its applications

The paper studies the general non-autonomous predator–prey Kolmogorov systems. The general criteria of integrable form on the permanence and ultimate boundedness are established. As applications of these results, the sufficient conditions of integrable form on the permanence are obtained for non-autonomous Lotka–Volterra systems, Holling I-type functional response systems, Holling (m, n)-type functional response systems, Beddington–DeAngelis functional response systems, Leslie–Gower functional response systems and chemostat-type systems.

[1]  Horst R. Thieme,et al.  Uniform weak implies uniform strong persistence for non-autonomous semiflows , 1999 .

[2]  Sergei S. Pilyugin,et al.  Persistence Criteria for a Chemostat with Variable Nutrient Input , 2001 .

[3]  S Pavlou,et al.  Coexistence of three competing microbial populations in a chemostat with periodically varying dilution rate. , 1995, Mathematical biosciences.

[4]  A. Siamj. GLOBAL ANALYSIS IN A PREDATOR-PREY SYSTEM WITH NONMONOTONIC FUNCTIONAL RESPONSE∗ , 2000 .

[5]  A. B. Roy,et al.  Persistence of two prey-one predator system with ratio-dependent predator influence , 2000 .

[6]  Donald L. DeAngelis,et al.  A Model for Tropic Interaction , 1975 .

[7]  H. I. Freedman,et al.  Persistence definitions and their connections , 1990 .

[8]  T. Lindström Qualitative analysis of a predator-prey system with limit cycles , 1993 .

[9]  E O Powell,et al.  Theory of the chemostat. , 1965, Laboratory practice.

[10]  J. Pitchford,et al.  Intratrophic predation in simple predator-prey models , 1998 .

[11]  F. Zanolin,et al.  A priori bounds and periodic solutions for a class of planar systems with applications to Lotka-Volterra equations , 1994 .

[12]  Sze-Bi Hsu,et al.  Global Stability for a Class of Predator-Prey Systems , 1995, SIAM J. Appl. Math..

[13]  Shigui Ruan,et al.  Global Analysis in a Predator-Prey System with Nonmonotonic Functional Response , 2001, SIAM J. Appl. Math..

[14]  Hal L. Smith The periodically forced Droop model for phytoplankton growth in a chemostat , 1997 .

[15]  H. I. Freedman Deterministic mathematical models in population ecology , 1982 .

[16]  Chris Cosner,et al.  On the Dynamics of Predator–Prey Models with the Beddington–DeAngelis Functional Response☆ , 2001 .

[17]  H. I. Freedman,et al.  Periodic solutions of a predator-prey system with periodic coefficients☆ , 1981 .

[18]  Rafael Ortega,et al.  The periodic predator-prey Lotka-Volterra model , 1996, Advances in Differential Equations.

[19]  J. Beddington,et al.  Mutual Interference Between Parasites or Predators and its Effect on Searching Efficiency , 1975 .

[20]  J. K. Hale,et al.  Competition for fluctuating nutrient , 1983 .

[21]  C. S. Holling,et al.  The functional response of predators to prey density and its role in mimicry and population regulation. , 1965 .

[22]  Teng Zhi-dong The almost periodic Kolmogorov competitive systems , 2000 .

[23]  H. I. Freedman,et al.  Persistence in predator-prey systems with ratio-dependent predator influence , 1993 .

[24]  Donald L. DeAngelis,et al.  A MODEL FOR TROPHIC INTERACTION , 1975 .

[25]  J. Gower,et al.  The properties of a stochastic model for the predator-prey type of interaction between two species , 1960 .

[26]  H R Thieme,et al.  Uniform persistence and permanence for non-autonomous semiflows in population biology. , 2000, Mathematical biosciences.

[27]  Josef Hofbauer,et al.  The theory of evolution and dynamical systems , 1988 .

[28]  Teng Zhi-dong Uniform persistence of the periodic predator-prey lotka-volterra systems , 1999 .