Within the human utero-placental unit only decidualized stromal cells express mRNA for prolactin. However, it is not clear if the level of prolactin production is related to the number of decidualized cells or the capacity of individual decidual cells to synthesize prolactin, either or both of which parameters may change during pregnancy. In the present study, prolactin production at different stages of human pregnancy was examined using quantitative in situ hybridization to assess decidual prolactin mRNA abundance, immunocytochemistry to examine the prolactin content inside decidual cells and RIA to measure decidual prolactin output into amniotic fluid. Throughout pregnancy the proportion of stromal cells showing positive immunostaining and mRNA for prolactin increased. There was a parallel increase in decidual cell size which was correlated with an increase in prolactin gene expression and intensity of immunostaining for prolactin in individual decidual cells. These changes in decidual cells were consistent with the changes in the concentration of prolactin in amniotic fluid. These results suggest that there is a close link between the level of prolactin gene expression and production of prolactin by individual decidual cells, which in turn is directly related to the process of decidualization that continues throughout human pregnancy.