Initial Index: A New Complexity Function for Languages

A new complexity measure for languages is defined, called the initial index. This measure is of combinatorial nature; it is a function defined by counting the minimal number of states of automata recognizing approximations of a language.

[1]  Jean Berstel,et al.  Transductions and context-free languages , 1979, Teubner Studienbücher : Informatik.

[2]  Joaquim Gabarró Une Application des Notions de Centre et Index Rationell a Certains Langages Algébriques , 1982, RAIRO Theor. Informatics Appl..

[3]  Masayuki Kimura,et al.  Pattern Decomposition for Tessellation Automata , 1981, Theor. Comput. Sci..

[4]  James L. Peterson Computation Sequence Sets , 1976, J. Comput. Syst. Sci..

[5]  Donald E. Knuth,et al.  Big Omicron and big Omega and big Theta , 1976, SIGA.

[6]  Hermann A. Maurer,et al.  Concise Description of Finite Languages , 1981, Theor. Comput. Sci..

[7]  John Milnor,et al.  A note on curvature and fundamental group , 1968 .

[8]  Sheila A. Greibach Remarks on the Complexity of Nondeterministic Counter Languages , 1976, Theor. Comput. Sci..

[9]  Maurice Nivat,et al.  Transduction des langages de Chomsky , 1968 .

[10]  Sheila A. Greibach Remarks on Blind and Partially Blind One-Way Multicounter Machines , 1978, Theor. Comput. Sci..

[11]  Seymour Ginsburg,et al.  Abstract Families of Languages , 1967, SWAT.

[12]  John E. Savage,et al.  Computational Work and Time on Finite Machines , 1972, JACM.

[13]  J. Leblanc THÈSE DE 3ÈME CYCLE , 1978 .

[14]  Bruno Courcelle,et al.  The Rational Index: A Complexity Measure for Languages , 1981, SIAM J. Comput..

[15]  V. I. Trofimov The growth functions of finitely generated semigroups , 1980 .

[16]  Matthias Jantzen,et al.  On the hierarchy of Petri net languages , 1979, RAIRO Theor. Informatics Appl..

[17]  Stefano Crespi-Reghizzi Petri Nets and Szilard Languages , 1977, Inf. Control..

[18]  Luc Boasson Cones rationnels et familles agreables de langages - application au langage a compteur , 1971 .