Asymptotic Bounds on the Rate of Locally Repairable Codes

New asymptotic upper bounds are presented on the rate of sequences of locally repairable codes (LRCs) with a prescribed relative minimum distance and locality over a finite field $F$. The bounds apply to LRCs in which the recovery functions are linear; in particular, the bounds apply to linear LRCs over $F$. The new bounds are shown to improve on previously published results, especially when the repair groups are disjoint.

[1]  R. Roth Asymptotic Bounds on the Rate of Locally Repairable Codes , 2022, IEEE Transactions on Information Theory.

[2]  Paul H. Siegel,et al.  Multi-Erasure Locally Recoverable Codes Over Small Fields: A Tensor Product Approach , 2020, IEEE Transactions on Information Theory.

[3]  Achim Klenke,et al.  Probability Theory: A Comprehensive Course 2nd Edition , 2020 .

[4]  M. M. al-Rifaie,et al.  Introduction to Coding , 2020, The Art of Coding.

[5]  Venkatesan Guruswami,et al.  Constructions of Maximally Recoverable Local Reconstruction Codes via Function Fields , 2018, IEEE Transactions on Information Theory.

[6]  Mario Blaum Extended Integrated Interleaved Codes Over Any Field With Applications to Locally Recoverable Codes , 2020, IEEE Transactions on Information Theory.

[7]  Sivakanth Gopi,et al.  Maximally Recoverable LRCs: A Field Size Lower Bound and Constructions for Few Heavy Parities , 2017, IEEE Transactions on Information Theory.

[8]  Dongdai Lin,et al.  Bounds for Binary Linear Locally Repairable Codes via a Sphere-Packing Approach , 2019, IEEE Transactions on Information Theory.

[9]  Camilla Hollanti,et al.  Alphabet-Dependent Bounds for Linear Locally Repairable Codes Based on Residual Codes , 2019, IEEE Transactions on Information Theory.

[10]  Gennian Ge,et al.  Optimal binary linear locally repairable codes with disjoint repair groups , 2019, SIAM J. Discret. Math..

[11]  Abhishek Agarwal,et al.  Combinatorial Alphabet-Dependent Bounds for Locally Recoverable Codes , 2017, IEEE Transactions on Information Theory.

[12]  Masoud Ardakani,et al.  On the Average Locality of Locally Repairable Codes , 2018, IEEE Transactions on Communications.

[13]  Balaji Srinivasan Babu,et al.  Bounds on the rate and minimum distance of codes with availability , 2017, 2017 IEEE International Symposium on Information Theory (ISIT).

[14]  Paul H. Siegel,et al.  Binary Linear Locally Repairable Codes , 2015, IEEE Transactions on Information Theory.

[15]  Itzhak Tamo,et al.  Bounds on the Parameters of Locally Recoverable Codes , 2015, IEEE Transactions on Information Theory.

[16]  Arya Mazumdar,et al.  Bounds on the Size of Locally Recoverable Codes , 2015, IEEE Transactions on Information Theory.

[17]  Itzhak Tamo,et al.  A Family of Optimal Locally Recoverable Codes , 2013, IEEE Transactions on Information Theory.

[18]  Zhifang Zhang,et al.  Repair Locality With Multiple Erasure Tolerance , 2014, IEEE Transactions on Information Theory.

[19]  Dimitris S. Papailiopoulos,et al.  Locally Repairable Codes , 2012, IEEE Transactions on Information Theory.

[20]  Gábor Lugosi,et al.  Concentration Inequalities - A Nonasymptotic Theory of Independence , 2013, Concentration Inequalities.

[21]  Frédérique E. Oggier,et al.  Locally repairable codes with multiple repair alternatives , 2013, 2013 IEEE International Symposium on Information Theory.

[22]  P. Vijay Kumar,et al.  Optimal linear codes with a local-error-correction property , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[23]  Cheng Huang,et al.  On the Locality of Codeword Symbols , 2011, IEEE Transactions on Information Theory.

[24]  Simon Litsyn,et al.  A New Upper Bound on the Rate of Non-Binary Codes , 2006, 2006 IEEE International Symposium on Information Theory.

[25]  David G. Luenberger,et al.  Linear and Nonlinear Programming: Second Edition , 2003 .

[26]  Simon Litsyn,et al.  On Upper Bounds for Minimum Distance and Covering Radius of Non-binary Codes , 1998, Des. Codes Cryptogr..

[27]  Ron M. Roth,et al.  Introduction to Coding Theory , 2019, Discrete Mathematics.

[28]  Matti J. Aaltonen,et al.  A new upper bound on nonbinary block codes , 1990, Discret. Math..

[29]  Robert J. McEliece,et al.  New upper bounds on the rate of a code via the Delsarte-MacWilliams inequalities , 1977, IEEE Trans. Inf. Theory.