Zyxin-Siah2–Lats2 axis mediates cooperation between Hippo and TGF-β signalling pathways

[1]  N. Tapon,et al.  Zyxin Antagonizes the FERM Protein Expanded to Couple F-Actin and Yorkie-Dependent Organ Growth , 2015, Current Biology.

[2]  J. Li,et al.  Hypoxia regulates Hippo signalling through the SIAH2 ubiquitin E3 ligase , 2014, Nature Cell Biology.

[3]  Kyung-Ja Cho,et al.  Epithelial-Mesenchymal Transition , 2014, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[4]  G. Semenza,et al.  Hypoxia-inducible factor 1 mediates TAZ expression and nuclear localization to induce the breast cancer stem cell phenotype , 2014, Oncotarget.

[5]  M. Beckerle,et al.  LIM proteins in actin cytoskeleton mechanoresponse. , 2014, Trends in cell biology.

[6]  Giuseppe Basso,et al.  YAP/TAZ Incorporation in the β-Catenin Destruction Complex Orchestrates the Wnt Response , 2014, Cell.

[7]  R. Hakem,et al.  LATS2 suppresses oncogenic Wnt signaling by disrupting β-catenin/BCL9 interaction. , 2013, Cell reports.

[8]  O. Lee,et al.  Hypoxia-Induced Secretion of TGF-β1 in Mesenchymal Stem Cell Promotes Breast Cancer Cell Progression , 2013, Cell transplantation.

[9]  N. Elvassore,et al.  A Mechanical Checkpoint Controls Multicellular Growth through YAP/TAZ Regulation by Actin-Processing Factors , 2013, Cell.

[10]  Claire M Brown,et al.  A complex containing LPP and &agr;-actinin mediates TGF&bgr;-induced migration and invasion of ErbB2-expressing breast cancer cells , 2013, Journal of Cell Science.

[11]  David M. Thomas,et al.  The Hippo pathway and human cancer , 2013, Nature Reviews Cancer.

[12]  F. Camargo,et al.  YAP mediates crosstalk between the Hippo and PI(3)K–TOR pathways by suppressing PTEN via miR-29 , 2012, Nature Cell Biology.

[13]  Xiang-Dong Fu,et al.  Regulation of the Hippo-YAP Pathway by G-Protein-Coupled Receptor Signaling , 2012, Cell.

[14]  Stefano Piccolo,et al.  Transduction of mechanical and cytoskeletal cues by YAP and TAZ , 2012, Nature Reviews Molecular Cell Biology.

[15]  Hidemi Ito,et al.  TGF-β synergizes with defects in the Hippo pathway to stimulate human malignant mesothelioma growth , 2012, The Journal of experimental medicine.

[16]  Hidemi Ito,et al.  TGF-b synergizes with defects in the Hippo pathway to stimulate human malignant mesothelioma growth , 2012 .

[17]  Jindan Yu,et al.  Cell detachment activates the Hippo pathway via cytoskeleton reorganization to induce anoikis. , 2012, Genes & development.

[18]  Bin Zhao,et al.  The Hippo pathway in organ size control, tissue regeneration and stem cell self-renewal , 2011, Nature Cell Biology.

[19]  Nicola Elvassore,et al.  Role of YAP/TAZ in mechanotransduction , 2011, Nature.

[20]  Pedro Gaspar,et al.  Actin-Capping Protein and the Hippo pathway regulate F-actin and tissue growth in Drosophila , 2011, Development.

[21]  K. Basler,et al.  Zyxin Links Fat Signaling to the Hippo Pathway , 2011, PLoS biology.

[22]  M. Ji,et al.  KIBRA Regulates Hippo Signaling Activity via Interactions with Large Tumor Suppressor Kinases* , 2011, The Journal of Biological Chemistry.

[23]  Janet Rossant,et al.  The Crumbs complex couples cell density sensing to Hippo-dependent control of the TGF-β-SMAD pathway. , 2010, Developmental cell.

[24]  D. Pan,et al.  The hippo signaling pathway in development and cancer. , 2010, Developmental cell.

[25]  Marc D. H. Hansen,et al.  Zyxin controls migration in epithelial–mesenchymal transition by mediating actin‐membrane linkages at cell–cell junctions , 2009, Journal of cellular physiology.

[26]  K. Guan,et al.  A coordinated phosphorylation by Lats and CK1 regulates YAP stability through SCF(beta-TRCP). , 2010, Genes & development.

[27]  Jianmin Zhang,et al.  YAP-dependent induction of amphiregulin identifies a non-cell-autonomous component of the Hippo pathway , 2009, Nature Cell Biology.

[28]  M. Nieto Epithelial-Mesenchymal Transitions in development and disease: old views and new perspectives. , 2009, The International journal of developmental biology.

[29]  Y. Kaneda,et al.  Zyxin mediates actin fiber reorganization in epithelial-mesenchymal transition and contributes to endocardial morphogenesis. , 2009, Molecular biology of the cell.

[30]  J. Massagué,et al.  TGFβ in Cancer , 2008, Cell.

[31]  Jiandie D. Lin,et al.  TEAD mediates YAP-dependent gene induction and growth control. , 2008, Genes & development.

[32]  J. Clements,et al.  Epithelial—mesenchymal and mesenchymal—epithelial transitions in carcinoma progression , 2007, Journal of cellular physiology.

[33]  Li Li,et al.  Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. , 2007, Genes & development.

[34]  G. Feldmann,et al.  Elucidation of a Universal Size-Control Mechanism in Drosophila and Mammals , 2007, Cell.

[35]  B. Edgar,et al.  Filling out the Hippo pathway , 2007, Nature Reviews Molecular Cell Biology.

[36]  A. Moustakas,et al.  Actions of TGF-β as tumor suppressor and pro-metastatic factor in human cancer , 2007 .

[37]  A. Moustakas,et al.  Actions of TGF-beta as tumor suppressor and pro-metastatic factor in human cancer. , 2007, Biochimica et biophysica acta.

[38]  Brian Bierie,et al.  TGF- and cancer , 2006 .

[39]  Masaaki Yoshigi,et al.  Mechanical force mobilizes zyxin from focal adhesions to actin filaments and regulates cytoskeletal reinforcement , 2005, The Journal of cell biology.

[40]  Jianbin Huang,et al.  The Hippo Signaling Pathway Coordinately Regulates Cell Proliferation and Apoptosis by Inactivating Yorkie, the Drosophila Homolog of YAP , 2005, Cell.

[41]  C. Lewis,et al.  Mechanisms regulating the recruitment of macrophages into hypoxic areas of tumors and other ischemic tissues. , 2004, Blood.

[42]  G. Rodan,et al.  The LATS2/KPM tumor suppressor is a negative regulator of the androgen receptor. , 2004, Molecular endocrinology.

[43]  J. Brown,et al.  Exploiting tumour hypoxia in cancer treatment , 2004, Nature Reviews Cancer.

[44]  Ray Keller,et al.  Mechanisms, mechanics and function of epithelial–mesenchymal transitions in early development , 2003, Mechanisms of Development.

[45]  N. Tapon,et al.  The Salvador partner Hippo promotes apoptosis and cell-cycle exit in Drosophila , 2003, Nature Cell Biology.

[46]  Ryan S. Udan,et al.  Hippo promotes proliferation arrest and apoptosis in the Salvador/Warts pathway , 2003, Nature Cell Biology.

[47]  Shian Wu,et al.  hippo Encodes a Ste-20 Family Protein Kinase that Restricts Cell Proliferation and Promotes Apoptosis in Conjunction with salvador and warts , 2003, Cell.

[48]  I. Hariharan,et al.  The Drosophila Mst Ortholog, hippo, Restricts Growth and Cell Proliferation and Promotes Apoptosis , 2003, Cell.

[49]  J. Massagué,et al.  Cytostatic and apoptotic actions of TGF-beta in homeostasis and cancer. , 2003, Nature reviews. Cancer.

[50]  Xiu-fen Lei,et al.  Autocrine TGFβ supports growth and survival of human breast cancer MDA-MB-231 cells , 2002, Oncogene.

[51]  Xiu-fen Lei,et al.  Autocrine TGFbeta supports growth and survival of human breast cancer MDA-MB-231 cells. , 2002, Oncogene.

[52]  Katsuyoshi Hatakeyama,et al.  Zyxin, a Regulator of Actin Filament Assembly, Targets the Mitotic Apparatus by Interacting with H-Warts/Lats1 Tumor Suppressor , 2000, The Journal of cell biology.

[53]  N. Copeland,et al.  Title Structure , Expression , and Chromosome Mapping of LATS 2 , a Mammalian Homologue of the Drosophila Tumor Suppressor Gene lats / warts , 2022 .

[54]  W. Tao,et al.  Human homologue of the Drosophila melanogaster lats tumour suppressor modulates CDC2 activity , 1999, Nature Genetics.

[55]  M. Reiss TGF-beta and cancer. , 1999, Microbes and infection.