Implicit Gamma Theorems (I): Pseudoroots and Pseudospectra
暂无分享,去创建一个
[1] B. Dundas,et al. DIFFERENTIAL TOPOLOGY , 2002 .
[2] Lloyd N. Trefethen,et al. Computation of pseudospectra , 1999, Acta Numerica.
[3] Lenore Blum,et al. Complexity and Real Computation , 1997, Springer New York.
[4] Myong-Hi Kim. On approximate zeros and rootfinding algorithms for a complex polynomial , 1988 .
[5] W. Rudin. Function Theory in the Unit Ball of Cn , 1980 .
[6] Françoise Tisseur,et al. Perturbation theory for homogeneous polynomial eigenvalue problems , 2003 .
[7] L. Trefethen,et al. Pseudozeros of polynomials and pseudospectra of companion matrices , 1994 .
[8] K. Brown,et al. Graduate Texts in Mathematics , 1982 .
[9] R. Abraham,et al. Manifolds, tensor analysis, and applications: 2nd edition , 1988 .
[10] D. Luenberger. Optimization by Vector Space Methods , 1968 .
[11] H. Cartan. Elementary Theory of Analytic Functions of One or Several Complex Variables , 1963 .
[12] L. Trefethen. Spectra and pseudospectra , 2005 .
[13] R. Abraham,et al. Manifolds, Tensor Analysis, and Applications , 1983 .
[14] Ronald G Mosier. Root neighborhoods of a polynomial , 1986 .
[15] S. Smale,et al. Complexity of Bezout's theorem IV: probability of success; extensions , 1996 .
[16] Nicholas J. Higham,et al. More on pseudospectra for polynomial eigenvalue problems and applications in control theory , 2002 .
[17] Nicholas J. Higham,et al. Structured Pseudospectra for Polynomial Eigenvalue Problems, with Applications , 2001, SIAM J. Matrix Anal. Appl..