Computing reachable states for nonlinear biological models

In this paper, we describe reachability computation for continuous and hybrid systems and its potential contribution to the process of building and debugging biological models. We summarize the state-of-the-art for linear systems and then develop a novel algorithm for computing reachable states for nonlinear systems. We report experimental results obtained using a prototype implementation applied to several biological models. We believe these results constitute a promising contribution to the analysis of complex models of biological systems.

[1]  A. Popel,et al.  A Biochemical Model of Matrix Metalloproteinase 9 Activation and Inhibition* , 2007, Journal of Biological Chemistry.

[2]  Oded Maler,et al.  Accurate hybridization of nonlinear systems , 2010, HSCC '10.

[3]  Calin Belta,et al.  Model Checking Genetic Regulatory Networks with Parameter Uncertainty , 2007, HSCC.

[4]  Mark R. Greenstreet Verifying Safety Properties of Differential Equations , 1996, CAV.

[5]  Antoine Girard,et al.  Efficient Computation of Reachable Sets of Linear Time-Invariant Systems with Inputs , 2006, HSCC.

[6]  Thao Dang Approximate Reachability Computation for Polynomial Systems , 2006, HSCC.

[7]  Stavros Tripakis,et al.  Verification of Hybrid Systems with Linear Differential Inclusions Using Ellipsoidal Approximations , 2000, HSCC.

[8]  P. Olver Nonlinear Systems , 2013 .

[9]  Oded Maler,et al.  Reachability Analysis via Face Lifting , 1998, HSCC.

[10]  Bruce H. Krogh,et al.  Verification of Polyhedral-Invariant Hybrid Automata Using Polygonal Flow Pipe Approximations , 1999, HSCC.

[11]  O. Maler A unified approach for studying discrete and continuous dynamical systems , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).

[12]  Oded Maler,et al.  Control from computer science , 2001, Annu. Rev. Control..

[13]  Alexander Schrijver,et al.  Theory of linear and integer programming , 1986, Wiley-Interscience series in discrete mathematics and optimization.

[14]  Pravin Varaiya,et al.  Reach Set Computation Using Optimal Control , 2000 .

[15]  Thi Xuan Thao Dang Verification and Synthesis of Hybrid Systems , 2000 .

[16]  Aude Maignan,et al.  Hybrid computation , 2001, ISSAC '01.

[17]  Eugene Asarin,et al.  Abstraction by Projection and Application to Multi-affine Systems , 2004, HSCC.

[18]  Ian M. Mitchell,et al.  Reachability Analysis Using Polygonal Projections , 1999, HSCC.

[19]  Luc Jaulin,et al.  Applied Interval Analysis , 2001, Springer London.

[20]  S. Sastry Nonlinear Systems: Analysis, Stability, and Control , 1999 .

[21]  Axel Kowald,et al.  Systems Biology in Practice: Concepts, Implementation and Application , 2005 .

[22]  Bruce H. Krogh,et al.  Computational techniques for hybrid system verification , 2003, IEEE Trans. Autom. Control..

[23]  Thomas A. Henzinger,et al.  The Algorithmic Analysis of Hybrid Systems , 1995, Theor. Comput. Sci..

[24]  T. Dang Vérification et synthèse des systèmes hybrides , 2000 .

[25]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[26]  Antoine Girard,et al.  Hybridization methods for the analysis of nonlinear systems , 2007, Acta Informatica.

[27]  B. Krogh,et al.  Reachability analysis of nonlinear systems using trajectory piecewise linearized models , 2006, 2006 American Control Conference.

[28]  Oded Maler,et al.  Approximating Continuous Systems by Timed Automata , 2008, FMSB.

[29]  Antoine Girard,et al.  Reachability of Uncertain Linear Systems Using Zonotopes , 2005, HSCC.

[30]  Gilles Clermont,et al.  Parameter Synthesis in Nonlinear Dynamical Systems: Application to Systems Biology , 2009, RECOMB.

[31]  Olivier Bournez,et al.  Approximate Reachability Analysis of Piecewise-Linear Dynamical Systems , 2000, HSCC.

[32]  Daniel T Gillespie,et al.  Stochastic simulation of chemical kinetics. , 2007, Annual review of physical chemistry.

[33]  J. Aubin,et al.  Differential inclusions set-valued maps and viability theory , 1984 .

[34]  T. Henzinger,et al.  Algorithmic Analysis of Nonlinear Hybrid Systems , 1998, CAV.

[35]  Matthias Althoff,et al.  Reachability analysis of nonlinear systems with uncertain parameters using conservative linearization , 2008, 2008 47th IEEE Conference on Decision and Control.

[36]  Oded Maler,et al.  Systematic Simulation Using Sensitivity Analysis , 2007, HSCC.

[37]  Hidde de Jong,et al.  Qualitative Simulation of Genetic Regulatory Networks: Method and Application , 2001, IJCAI.

[38]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[39]  Colas Le Guernic Reachability Analysis of Hybrid Systems with Linear Continuous Dynamics. (Calcul d'Atteignabilité des Systèmes Hybrides à Partie Continue Linéaire) , 2009 .

[40]  Rajeev Alur,et al.  Counterexample-guided predicate abstraction of hybrid systems , 2006, Theor. Comput. Sci..

[41]  Goran Frehse,et al.  PHAVer: algorithmic verification of hybrid systems past HyTech , 2005, International Journal on Software Tools for Technology Transfer.

[42]  Pravin Varaiya,et al.  Ellipsoidal Techniques for Reachability Analysis of Discrete-Time Linear Systems , 2007, IEEE Transactions on Automatic Control.

[43]  M. Ziegler Volume 152 of Graduate Texts in Mathematics , 1995 .

[44]  C. Belta,et al.  Analysis of lactose metabolism in E. Coli using reachability analysis of hybrid systems. , 2007, IET systems biology.

[45]  Ian M. Mitchell,et al.  Level Set Methods for Computation in Hybrid Systems , 2000, HSCC.

[46]  M. Hirsch,et al.  Differential Equations, Dynamical Systems, and Linear Algebra , 1974 .

[47]  A. Girard,et al.  Reachability analysis of linear systems using support functions , 2010 .

[48]  Oded Maler,et al.  On Interleaving in Timed Automata , 2006, CONCUR.

[49]  Pravin Varaiya,et al.  Ellipsoidal Techniques for Reachability Analysis , 2000, HSCC.