Limits on Hot Galactic Halo Gas from X-Ray Absorption Lines

Although the existence of large-scale hot gaseous halos around massive disk galaxies has been theorized for a long time, there is yet very little observational evidence. We report the Chandra and XMM-Newton grating spectral detection of O VII and Ne IX Kα absorption lines along the sight line of 4U 1957+11. The line absorption is consistent with the interstellar medium in origin. Attributing these line absorptions to the hot gas associated with the Galactic disk, we search for the gaseous halo around the Milky Way by comparing this sight line with more distant ones (toward the X-ray binary LMC X-3 and the active galactic nucleus Mrk 421). We find that all the line absorptions along the LMC X-3 and Mrk 421 sight lines are attributable to the hot gas in a thick Galactic disk, as traced by the absorption lines in the spectra of 4U 1957+11 after a Galactic latitude-dependent correction. We constrain the O VII column density through the halo to be NO VII < 5 × 1015 cm−2 (95% confidence limit) and conclude that the hot gas contribution to the metal line absorptions, if existing, is negligible.

[1]  J. Bregman,et al.  X-Ray Absorption from the Milky Way Halo and the Local Group , 2007, 0707.1699.

[2]  Q. Wang,et al.  The Galactic Central Diffuse X-Ray Enhancement: A Differential Absorption/Emission Analysis , 2007, 0705.2772.

[3]  Q. Wang,et al.  Submitted to the Astrophysical Journal on 2006 Aug. 17 Preprint typeset using LATEX style emulateapj v. 10/09/06 THE NON-ISOTHERMALITY AND EXTENT OF GALACTIC DIFFUSE HOT GAS TOWARD MRK 421 , 2006 .

[4]  J. Irwin,et al.  An XMM–Newton observation of the massive edge-on Sb galaxy NGC 2613 , 2006, astro-ph/0606543.

[5]  S. Hansen,et al.  The Density Profiles of Hot Galactic Halo Gas , 2006, astro-ph/0606301.

[6]  Norbert S. Schulz,et al.  High-Resolution X-Ray Spectroscopy of the Interstellar Medium. II. Neon and Iron Absorption Edges , 2006, astro-ph/0605674.

[7]  D. Steeghs,et al.  The magnetic nature of disk accretion onto black holes , 2006, Nature.

[8]  F. Paerels,et al.  The O VII X-Ray Forest toward Markarian 421: Consistency between XMM-Newton and Chandra , 2006, astro-ph/0604519.

[9]  J. Sommer-Larsen Where Are the “Missing” Galactic Baryons? , 2006, astro-ph/0602595.

[10]  Q. Wang,et al.  X-Ray Absorption Spectroscopy of the Multiphase Interstellar Medium: Oxygen and Neon Abundances , 2005, astro-ph/0512486.

[11]  Maryland.,et al.  A Galactic Origin for the Local Ionized X-Ray Absorbers , 2005, astro-ph/0511777.

[12]  Copenhagen,et al.  Discovery of a very extended X-ray halo around a quiescent spiral galaxy – The “missing link” of galaxy formation , 2005, astro-ph/0511682.

[13]  India.,et al.  Filling factors and scale heights of the diffuse ionized gas in the Milky Way , 2005, astro-ph/0511172.

[14]  D. Breitschwerdt,et al.  The multi-phase gaseous halos of star forming late-type galaxies - I. XMM-Newton observations of the hot ionized medium , 2005, astro-ph/0510079.

[15]  M. Fukugita,et al.  Massive Coronae of Galaxies , 2005, astro-ph/0508040.

[16]  S. Mathur,et al.  Probing the Local Group Medium toward Markarian 421 with Chandra and the Far Ultraviolet Spectroscopic Explorer , 2005 .

[17]  W. Cui,et al.  Warm-Hot Gas in and around the Milky Way: Detection and Implications of O VII Absorption toward LMC X-3 , 2005, astro-ph/0508661.

[18]  Mark L. Schattenburg,et al.  The Chandra High‐Energy Transmission Grating: Design, Fabrication, Ground Calibration, and 5 Years in Flight , 2005, astro-ph/0507035.

[19]  Q. Wang,et al.  X-Ray Absorption Line Spectroscopy of the Galactic Hot Interstellar Medium , 2005, astro-ph/0502242.

[20]  J. Bullock,et al.  Multiphase galaxy formation: high-velocity clouds and the missing baryon problem , 2004, astro-ph/0406632.

[21]  Y. Birnboim,et al.  Virial shocks in galactic haloes , 2003, astro-ph/0302161.

[22]  H. W. Moos,et al.  Highly Ionized High-Velocity Gas in the Vicinity of the Galaxy , 2002, astro-ph/0207562.

[23]  B. Savage,et al.  Distribution and Kinematics of O VI in the Galactic Halo , 2002, astro-ph/0208140.

[24]  Copenhagen,et al.  X-ray emission from haloes of simulated disc galaxies , 2002, astro-ph/0201529.

[25]  H. Netzer,et al.  Inner-Shell 1s-2p Soft X-Ray Absorption Lines , 2002, astro-ph/0201416.

[26]  S. Mathur,et al.  Chandra Discovery of a Tree in the X-Ray Forest toward PKS 2155–304: The Local Filament? , 2002, astro-ph/0201058.

[27]  Rachel S. Somerville,et al.  ΛCDM-based Models for the Milky Way and M31. I. Dynamical Models , 2001, astro-ph/0110390.

[28]  R. McCray,et al.  Astrophysical Journal, in press Preprint typeset using L ATEX style emulateapj v. 26/01/00 ON THE ABSORPTION OF X-RAYS IN THE INTERSTELLAR MEDIUM , 2000 .

[29]  M. Nowak,et al.  On the Enigmatic X-Ray Source V1408 Aquilae (=4U 1957+11) , 1999, astro-ph/9903276.

[30]  A. Ferrara,et al.  Starburst-driven Mass Loss from Dwarf Galaxies: Efficiency and Metal Ejection , 1998, astro-ph/9801237.

[31]  G. Ferland,et al.  Atomic Data for Permitted Resonance Lines of Atoms and Ions from H to Si, and S, Ar, Ca, and Fe , 1996, atom-ph/9604003.

[32]  Carlos S. Frenk,et al.  Galaxy formation through hierarchical clustering , 1991 .

[33]  R. McCray,et al.  X-ray nebular models , 1982 .

[34]  L. Spitzer On a Possible Interstellar Galactic Corona. , 1956 .